%I #27 Oct 31 2015 14:11:22
%S 88,248,826,1417,1571,1595,3682,3928,4448,5089,5137,6479,7754,8038,
%T 8384,8461,9257,9640,10393,10825,10922,11878,13294,14290,14767,14941,
%U 15977,16786,17684,17777,17935,18437,18677,19495,20497,20555,21649,22487,23239,23396
%N Numbers n such that n, p=prime(n) and q=prime(p) have the same sum of digits.
%C Hence both p and q are Honaker primes (A033548) and both n and p are terms in A033549.
%e n=88, p=prime(n)=457 and q=prime(p)=3229 have the same sum of digits=16;
%e n=248, p=prime(n)=1571 and q=prime(p)=13217 have the same sum of digits=14;
%e n=660349, p=178115131 and q=178115131 have the same sum of digits=28.
%Y Cf. A000040, A000720, A007953, A033548, A033549.
%K nonn,base
%O 1,1
%A _Zak Seidov_, Oct 22 2015