This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261141 Positive integers n that can be expressed as a product of Jacobsthal numbers (A001045), not necessarily distinct. 1
 1, 3, 5, 9, 11, 15, 21, 25, 27, 33, 43, 45, 55, 63, 75, 81, 85, 99, 105, 121, 125, 129, 135, 165, 171, 189, 215, 225, 231, 243, 255, 275, 297, 315, 341, 363, 375, 387, 405, 425, 441, 473, 495, 513, 525, 567, 605, 625, 645, 675, 683, 693, 729, 765, 825, 855, 891, 903, 935, 945 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE 15 is in the sequence because Jacobsthal numbers 3 and 5 multiply to 15. MAPLE N:= 10000: # to get all terms <= N J:= gfun:-rectoproc({a(n)=a(n-1)+2*a(n-2), a(0)=0, a(1)=1}, a(n), remember): P:= {1}; for j from 3 to ilog2(N*3+1) do   x:= J(j);   P:= `union`(seq(select(`<=`, map(`*`, P, x^k), N), k=0..floor(log[x](N)))) od: sort(convert(P, list)); # Robert Israel, Nov 19 2015 MATHEMATICA max = 11; jacobProds = Table[(2^n - (-1)^n)/3, {n, 2, max]; curr = 2; While[jacobProds[[curr]] < 2^max/3, jacobProds = Union[jacobProds, jacobProds[[curr]] * jacobProds]; curr++]; Select[jacobProds, # < 2^max/3 &] (* Alonso del Arte, Nov 18 2015 *) CROSSREFS Cf. A001045. Sequence in context: A104635 A210537 A199407 * A283594 A233764 A233780 Adjacent sequences:  A261138 A261139 A261140 * A261142 A261143 A261144 KEYWORD nonn AUTHOR Jeffrey Shallit, Nov 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 16:52 EDT 2019. Contains 322216 sequences. (Running on oeis4.)