This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261129 Highest exponent in prime factorization of the swinging factorial (A056040). 0
 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 4, 4, 4, 3, 3, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,5 COMMENTS A000120(floor(n/2)) <= a(n) <= A000523(n), (n>=2). A263922 is a subsequence. LINKS FORMULA a(n) = A051903(A056040(n)) for n>=2. MAPLE swing := n -> n!/iquo(n, 2)!^2: max_exp := n -> max(seq(s[2], s=ifactors(n)[2])): seq(max_exp(swing(n)), n=2..88); PROG (Sage) swing = lambda n: factorial(n)//factorial(n//2)^2 max_exp = lambda n: max([p[1] for p in list(n.factor())]) print [max_exp(swing(n)) for n in (2..88)] CROSSREFS Cf. A000120, A000523, A056040, A263922. Sequence in context: A023568 A081753 A232551 * A305871 A089049 A275235 Adjacent sequences:  A261126 A261127 A261128 * A261130 A261131 A261132 KEYWORD nonn AUTHOR Peter Luschny, Oct 31 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 16:29 EDT 2019. Contains 325049 sequences. (Running on oeis4.)