login
A261115
Expansion of f(x, x) * f(x^4, x^8) in powers of x where f(,) is Ramanujan's general theta function.
6
1, 2, 0, 0, 3, 2, 0, 0, 3, 4, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 3, 2, 0, 0, 4, 2, 0, 0, 1, 6, 0, 0, 2, 2, 0, 0, 4, 2, 0, 0, 2, 0, 0, 0, 4, 2, 0, 0, 1, 4, 0, 0, 2, 4, 0, 0, 2, 4, 0, 0, 1, 2, 0, 0, 8, 0, 0, 0, 2, 4, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 4, 4, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/6) * eta(q^2)^5 * eta(q^8) * eta(q^12)^2 / (eta(q)^2 * eta(q^4)^3 * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 2, -3, 2, 0, 2, -3, 2, -1, 2, -3, 2, -2, 2, -3, 2, -1, 2, -3, 2, 0, 2, -3, 2, -2, ...].
a(n) = (-1)^n * A260110(n) = A128580(3*n) = A129402(3*n) = A115660(6*n + 1) = A128581(6*n + 1) = A192013(6*n + 1).
a(4*n) = A113780(n). a(4*n + 1) = 2 * A260089(n). a(4*n + 2) = a(4*n + 3) = 0.
EXAMPLE
G.f. = 1 + 2*x + 3*x^4 + 2*x^5 + 3*x^8 + 4*x^9 + 2*x^12 + 2*x^13 + 2*x^16 + ...
G.f. = q + 2*q^7 + 3*q^25 + 2*q^31 + 3*q^49 + 4*q^55 + 2*q^73 + 2*q^79 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 4, 0, x^12] / QPochhammer[ x^4, x^8], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^3 * eta(x^24 + A)), n))};
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 08 2015
STATUS
approved