login
A261053
Expansion of Product_{k>=1} (1+x^k)^(k^k).
7
1, 1, 4, 31, 289, 3495, 51268, 891152, 17926913, 409907600, 10499834497, 297793199060, 9262502810645, 313457634240463, 11464902463397642, 450646709610954343, 18943070964019019671, 847932498252050293971, 40266255926484893366914, 2021845081107882645459639
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n^n * (1 + exp(-1)/n + (exp(-1)/2 + 4*exp(-2))/n^2).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^(d+1) ) * x^k/k). - Ilya Gutkovskiy, Nov 08 2018
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(i^i, j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
nmax=20; CoefficientList[Series[Product[(1+x^k)^(k^k), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) m=20; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^(k^k))) \\ G. C. Greubel, Nov 08 2018
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1+x^k)^(k^k): k in [1..(m+2)]]))); // G. C. Greubel, Nov 08 2018
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 08 2015
STATUS
approved