login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261036 Table read by rows: number of complete partitions of n with largest part = k. 7
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 2, 2, 1, 3, 4, 2, 1, 4, 5, 4, 2, 1, 4, 6, 5, 4, 1, 5, 8, 8, 5, 4, 1, 5, 10, 10, 8, 5, 1, 6, 11, 14, 10, 8, 5, 1, 6, 14, 16, 16, 10, 8, 1, 7, 16, 22, 20, 16, 10, 8, 1, 7, 18, 26, 27, 20, 16, 10, 1, 8, 21, 32, 34, 31 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
See A126796 for definition of complete partitions;
A126796(n) = sum of n-th row;
also T(n,floor((n+1)/2) = A126796(floor(n/2)).
LINKS
SeungKyung Park, Complete Partitions, Fibonacci Quarterly, Vol. 36 (1998), pp. 354-360.
FORMULA
According to the Park link, Theorem 3.7, p. 357f:
Let D_k(n) be the number of complete partitions of a positive integer n with largest part exactly k.
D_0(n) = 0 for all n, D_k(0) = 0 for all k, D_1(n)=1 for n>0, and for k>1:
D_k(n) = D_(k-1)(n-1) + D_k(n-k) if n >= 3*k-1, D_(k-1)(n-1) if 2*k-1 <= n <= 3*k-2, 0 if 1 <= n <= 2*k-2.
In the following, T(n,k) = D_k(n).
EXAMPLE
T(8,2) = #{1+1+1+1+1+1+2, 1+1+1+1+2+2, 1+1+2+2+2} = 3;
T(8,3) = #{1+1+1+1+1+3, 1+1+1+2+3, 1+1+3+3, 1+2+2+3} = 4;
T(8,4) = #{1+1+1+1+4, 1+1+2+4} = 2;
T(9,2) = #{+11+1+1+1+1+1+2, 1+1+1+1+1+2+2, 1+1+1+2+2+2, 1+2+2+2+2} = 4;
T(9,3) = #{1+1+1+1+1+1+3, 1+1+1+1+2+3, 1+1+1+3+3, 1+1+2+2+3, 3,3,2,1} = 5;
T(9,4) = #{1+1+1+1+1+4, 1+1+1+2+4, 1+1+3+4, 1+2+2+4} = 4;
T(9,5) = #{1+1+1+1+5, 1+1+2+2+5} = 2.
. -----------------------------------------------
. n | T(n,k), k = 1 .. [(n+1)/2] | A126796(n)
. ----+------------------------------+-----------
. 1 | 1 | 1
. 2 | 1 | 1
. 3 | 1 1 | 2
. 4 | 1 1 | 2
. 5 | 1 2 1 | 4
. 6 | 1 2 2 | 5
. 7 | 1 3 2 2 | 8
. 8 | 1 3 4 2 | 10
. 9 | 1 4 5 4 2 | 16
. 10 | 1 4 6 5 4 | 20
. 11 | 1 5 8 8 5 4 | 31
. 12 | 1 5 10 10 8 5 | 39
. 13 | 1 6 11 14 10 8 5 | 55
. 14 | 1 6 14 16 16 10 8 | 71
. 15 | 1 7 16 22 20 16 10 8 | 100
. 16 | 1 7 18 26 27 20 16 10 | 125
. 17 | 1 8 21 32 34 31 20 16 10 | 173
. 18 | 1 8 24 37 42 39 31 20 16 | 218
. 19 | 1 9 26 46 53 50 39 31 20 16 | 291
. 20 | 1 9 30 52 66 63 55 39 31 20 | 366
MATHEMATICA
d[k_, n_] := d[k, n] = Which[n == 0 || k == 0, 0, k == 1, 1, n >= 3 k - 1, d[k - 1, n - 1] + d[k, n - k], 2 k - 1 <= n <= 3 k - 2, d[k - 1, n - 1], True, 0]; Table[d[k, n], {n, 17}, {k, Floor[(n + 1)/2]}] // Flatten (* Michael De Vlieger, Jul 13 2017 *)
PROG
(Haskell)
import Data.MemoCombinators (memo2, integral, Memo)
a261036 n k = a261036_tabf !! (n-1) !! (k-1)
a261036_row n = a261036_tabf !! (n-1)
a261036_tabf = zipWith (map . flip dMemo) [1..] a122197_tabf where
dMemo = memo2 integral integral d
d 0 _ = 0
d _ 0 = 0
d 1 _ = 1
d k n | n <= 2 * k - 2 = 0
| n <= 3 * k - 2 = dMemo (k - 1) (n - 1)
| otherwise = dMemo (k - 1) (n - 1) + dMemo k (n - k)
CROSSREFS
Cf. A008619 (row lengths), A126796 (row sums).
Cf. A122197.
Sequence in context: A336431 A074746 A133188 * A008612 A029320 A363992
KEYWORD
nonn,tabf,look
AUTHOR
Reinhard Zumkeller, Aug 08 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 01:35 EDT 2024. Contains 371964 sequences. (Running on oeis4.)