The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260933 Lexicographically smallest permutation of the natural numbers, such that a(n)+n and a(n)+n+1 are both composite numbers. 3
 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 8, 13, 18, 17, 16, 15, 14, 19, 24, 23, 22, 21, 20, 25, 28, 27, 26, 33, 32, 31, 30, 29, 34, 39, 38, 37, 36, 35, 40, 43, 42, 41, 46, 45, 44, 47, 50, 49, 48, 53, 52, 51, 56, 55, 54, 57, 58, 59, 60, 61, 62, 65, 64, 63, 66, 67 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The permutation is self-inverse: a(a(n)) = n. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 MATHEMATICA a[n_]:=a[n]=(k=1; While[PrimeQ[k+n]||PrimeQ[k+n+1]||MemberQ[Array[a, n-1], k], k++]; k); Array[a, 100] (* Giorgos Kalogeropoulos, Jul 06 2021 *) PROG (Haskell) import Data.List (delete) a260933 n = a260933_list !! (n-1) a260933_list = f 1 [1..] where f x zs = g zs where g (y:ys) = if a010051' (x + y) == 0 && a010051' (x + y + 1) == 0 then y : f (x + 1) (delete y zs) else g ys (Python) from sympy import isprime def composite(n): return n > 1 and not isprime(n) def aupton(terms): alst, aset = [], set() for n in range(1, terms+1): an = 1 while True: while an in aset: an += 1 if composite(an+n) and composite(an+n+1): break an += 1 alst, aset = alst + [an], aset | {an} return alst print(aupton(67)) # Michael S. Branicky, Jul 06 2021 CROSSREFS Cf. A010051, A002808, A136798, A260936 (fixed points), A260822. Sequence in context: A284807 A309909 A031099 * A194755 A333884 A055118 Adjacent sequences: A260930 A260931 A260932 * A260934 A260935 A260936 KEYWORD nonn AUTHOR Reinhard Zumkeller, Aug 04 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 3 04:25 EST 2023. Contains 360024 sequences. (Running on oeis4.)