login
A260887
Sum over the genera g of the number of immersions of an oriented circle with n crossings in an unoriented surface of genus g.
4
1, 3, 14, 120, 1556, 27974, 618824, 16223180, 490127050, 16761331644, 639969571892, 26985326408240, 1245476099801252, 62451726395242858, 3380720087847928728, 196504354827002278248, 12206388156005725243280, 806977883623811932432386, 56573396893818112613554940, 4192088709829783508863131872
OFFSET
1,2
COMMENTS
a(n) is the sum over the n-th row of the triangle A260885.
a(n) is also the number of double cosets of H\G/K where G is the symmetric group S(2n), H is the subgroup generated by the centralizer of the circular permutation β = (1,2,3,...,2n) of G, K is a subgroup of G generated by the permutation ρ = (1,2)(3,4)...(2n-3,2n-2)(2n-1,2n), using cycle notation, and the subgroup (isomorphic with S(n)) that commutes with ρ and permutes odd resp. even integers among themselves.
For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - Robert Coquereaux, Nov 23 2015
LINKS
R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474
PROG
(Magma) /* For all n */
nbofdblecos := function(G, H, K);
CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K;
resH := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH] | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)};
Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G, CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for;
Append(~resH, bide); end for;
resK := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK] | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)};
Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G, CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for;
Append(~resK, bide); end for;
ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for; ndcl:= tot * oG/(oH * oK); return ndcl;
end function;
OUfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1, 2*j+1)(2, 2*j+2); Include(~genH, v) ; end for;
H := PermutationGroup< 2*n |genH>;
beta:=G!Append([2..2*n], 1); Cbeta:=Centralizer(G, beta);
rho:=Identity(G); for j in [0..(n-1)] do v := G ! (2*j+1, 2*j+2) ; rho := rho*v ; end for;
cycrho := PermutationGroup< 2*n |{rho}>; Hcycrho:=sub<G|[H, cycrho]>;
return nbofdblecos(G, Hcycrho, Cbeta); end function;
[OUfull(n) : n in [1..10]]; //
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Coquereaux, Aug 02 2015
STATUS
approved