This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260887 Sum over the genera g of the number of immersions of an oriented circle with n crossings in an unoriented surface of genus g. 4
 1, 3, 14, 120, 1556, 27974, 618824, 16223180, 490127050, 16761331644, 639969571892, 26985326408240, 1245476099801252, 62451726395242858, 3380720087847928728, 196504354827002278248, 12206388156005725243280, 806977883623811932432386, 56573396893818112613554940, 4192088709829783508863131872 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the sum over the n-th row of the triangle A260885. a(n) is also the number of double cosets of H\G/K where G is the symmetric group S(2n), H is the subgroup generated by the centralizer of the circular permutation β = (1,2,3,...,2n) of G, K is a subgroup of G generated by the permutation ρ = (1,2)(3,4)...(2n-3,2n-2)(2n-1,2n), using cycle notation, and the subgroup (isomorphic with S(n)) that commutes with ρ and permutes odd resp. even integers among themselves. For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - Robert Coquereaux, Nov 23 2015 LINKS R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474 PROG (MAGMA) /* For all n */ nbofdblecos := function(G, H, K); CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K; resH := []; for mu in [1..nCG] do  Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH]  | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)}; Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G, CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for; Append(~resH, bide); end for; resK := []; for mu in [1..nCG] do  Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK]  | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)}; Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G, CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for; Append(~resK, bide); end for; ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for;  ndcl:= tot *  oG/(oH * oK); return ndcl; end function; OUfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1, 2*j+1)(2, 2*j+2); Include(~genH, v) ; end for; H := PermutationGroup< 2*n |genH>; beta:=G!Append([2..2*n], 1); Cbeta:=Centralizer(G, beta); rho:=Identity(G);  for j in [0..(n-1)] do v := G ! (2*j+1, 2*j+2) ; rho := rho*v ; end for; cycrho := PermutationGroup< 2*n |{rho}>;  Hcycrho:=sub; return nbofdblecos(G, Hcycrho, Cbeta); end function; [OUfull(n) : n in [1..10]]; // CROSSREFS Cf. A260296, A260847, A260885, A260912. Sequence in context: A007140 A161936 A304983 * A127850 A324147 A186772 Adjacent sequences:  A260884 A260885 A260886 * A260888 A260889 A260890 KEYWORD nonn AUTHOR Robert Coquereaux, Aug 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 08:52 EDT 2019. Contains 327062 sequences. (Running on oeis4.)