login
A260845
a(n) = Sum_{k=0..n} (-1)^k*P(n,k)*k!, where P(n,k) is the number of partitions of n into k parts.
3
1, -1, 1, -5, 21, -105, 635, -4507, 36457, -330971, 3334377, -36913947, 445426739, -5818545721, 81805507069, -1231690773053, 19772941871385, -337146625794753, 6085005877228943, -115897323408009187, 2323090928155541677, -48883768421712917555, 1077440388662366900397
OFFSET
0,4
LINKS
FORMULA
G.f.: Sum(n!*(-x)^n/Product(1-x^k, k=1..n), n=1..infinity).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1,
b(n, i-1), 0)+expand(b(n-i, min(n-i, i))*x))
end:
a:= n-> (p-> add(i!*coeff(p, x, i)*(-1)^i, i=0..n))(b(n$2)):
seq(a(n), n=0..27); # Alois P. Heinz, Sep 18 2019
MATHEMATICA
CoefficientList[ Series[ Sum[ n!(-x)^n / Product[1 - x^k, {k, n}], {n, 0, 22}], {x, 0, 22}], x]
PROG
(Sage)
from sage.combinat.partition import number_of_partitions_length
[sum([(-1)^k*number_of_partitions_length(n, k)*factorial(k) for k in (0..n)]) for n in (0..22)]
CROSSREFS
Row sums of A318144.
Sequence in context: A100284 A337168 A341853 * A325157 A218299 A121881
KEYWORD
sign
AUTHOR
Peter Luschny, Aug 01 2015
STATUS
approved