login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260680 Peaceable coexisting armies of queens: number of inequivalent configurations with maximum number of queens as given in A250000. 2

%I

%S 1,1,1,10,3,35,19,71,18,380

%N Peaceable coexisting armies of queens: number of inequivalent configurations with maximum number of queens as given in A250000.

%C From _Rob Pratt_, Apr 05 2019: (Start)

%C Two solutions are regarded as equivalent if one can be obtained from the other by rotations, reflections, interchanging the colors (a group of order 16).

%C I used two computational methods, both implemented via PROC OPTMODEL from SAS:

%C One round of constraint programming, with LEXICO constraints to account for symmetry and an option to generate all solutions. This method returns only the lexicographically smallest representative of each equivalence class.

%C Multiple rounds of integer linear programming, with 16 additional cuts (one per group element) after each solution is found, to avoid generating an equivalent solution. This method terminates when the resulting cuts make the problem infeasible.

%C The attached text files are from the second method. (End)

%H Luca Petrone, <a href="/A260680/a260680.pdf">Graphic illustrations of a(6) and a(7)</a>

%H Rob Pratt, <a href="/A260680/a260680.txt">Solutions for n = 3</a>

%H Rob Pratt, <a href="/A260680/a260680_1.txt">Solutions for n = 4</a>

%H Rob Pratt, <a href="/A260680/a260680_2.txt">Solutions for n = 5</a>

%H Rob Pratt, <a href="/A260680/a260680_3.txt">Solutions for n = 6</a>

%H Rob Pratt, <a href="/A260680/a260680_4.txt">Solutions for n = 7</a>

%H Rob Pratt, <a href="/A260680/a260680_5.txt">Solutions for n = 8</a>

%H Rob Pratt, <a href="/A260680/a260680_6.txt">Solutions for n = 9</a>

%H Rob Pratt, <a href="/A260680/a260680_7.txt">Solutions for n = 10</a>

%e For n = 3, a(3) = 1 because the following solution is unique up to equivalence:

%e -----

%e |W..|

%e |...|

%e |.B.|

%e -----

%e From _Rob Pratt_ in A250000, Nov 30 2014 thru Jul 29 2015: (Start)

%e n=4:

%e ----------------------------------------------------------

%e |..B.||.B..||.B..||....||.BB.||..B.||...W||..B.|..B.|..W.|

%e |....||.B..||...B||.B.B||....||.B..||.B..||...B|B...|B...|

%e |...B||....||....||....||....||...W||..B.||.W..|...W|...B|

%e |WW..||W.W.||W.W.||W.W.||W..W||W...||W...||W...|.W..|.W..|

%e ----------------------------------------------------------

%e n=5:

%e ---------------------

%e |W...W||..B.B||.W.W.|

%e |..B..||W....||..W..|

%e |.B.B.||..B.B||B...B|

%e |..B..||W....||..W..|

%e |W...W||.W.W.||B...B|

%e ---------------------

%e (End)

%e From _Rob Pratt_, Mar 18 2019, additional solution for n=6 (not covered in attached pdf):

%e --------

%e |....W.|

%e |...W.W|

%e |B.....|

%e |B.B...|

%e |....WW|

%e |B.B...|

%e --------

%Y Cf. A250000.

%K hard,nonn,more

%O 1,4

%A _Christian Schroeder_, Nov 15 2015

%E a(6)-a(8) from _Luca Petrone_, Mar 11 2016

%E a(4), a(6), and a(8) corrected by _Rob Pratt_, Mar 18 2019

%E a(9) and a(10) from _Rob Pratt_, Mar 19 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 09:16 EDT 2020. Contains 336274 sequences. (Running on oeis4.)