login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260649 Expansion of (phi(q^3) * phi(q^5) + phi(q) * phi(q^15)) / 2 - 1 in powers of q where phi(q) is a Ramanujan theta function. 2
1, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 3, 2, 0, 2, 1, 0, 0, 2, 2, 1, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of (eta(q^2)^2 * eta(q^6) * eta(q^10) * eta(q^30)^2) / (eta(q) * eta(q^4) * eta(q^15) * eta(q^60)) - 1 in powers of q.

a(n) is multiplicative with a(2^e) = |e-1|, a(3^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15), a(p^e) = (1 + (-1)^e)/2 if p == 7, 11, 13, 14 (mod 15).

Moebius transform of a period 60 sequence.

G.f.: Sum_{k>0} Kronecker(-15, k) x^k / (1 - (-x)^k).

a(n) = A122855(n) unless n=0.

a(3*n) = a(5*n) = a(n). a(4*n) = A035175(n). a(4*n + 2) = 0.

a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0.

EXAMPLE

G.f. = x + x^3 + x^4 + x^5 + 2*x^8 + x^9 + x^12 + x^15 + 3*x^16 + 2*x^17 + ...

MATHEMATICA

a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -15, #] If[ Mod[#, 4] == 2, -1, 1] &]];

a[ n_] := If[ n < 1, 0, Times@@ (Which[# == 1, 1, # == 2, #2 - 1, # < 6, 1, KroneckerSymbol[#, -15] == 1, #2 + 1, True, 1 - Mod[#2, 2]]& @@@ FactorInteger[n])];

a[ n_] := SeriesCoefficient[QPochhammer[ q^2]^2 QPochhammer[ q^6] QPochhammer[ q^10] QPochhammer[ q^30]^2 / (QPochhammer[ q] QPochhammer[ q^4] QPochhammer[ q^15] QPochhammer[ q^60]) - 1, {q, 0, n}];

PROG

(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-15, d) * (-1)^(d%4==2) ))};

(PARI) {a(n) = if( n<1, 0, qfrep( [1, 0; 0, 15], n)[n] + qfrep( [3, 0; 0, 5], n)[n] )};

(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, e-1, p==3 || p==5, 1, kronecker(p, -15) == 1, e+1, 1-e%2 )))};

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A) * eta(x^10 + A) * eta(x^30 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^15 + A) * eta(x^60 + A)) - 1, n))};

CROSSREFS

Cf. A035175, A122855.

Sequence in context: A000161 A060398 A253242 * A122855 A140727 A140728

Adjacent sequences:  A260646 A260647 A260648 * A260650 A260651 A260652

KEYWORD

nonn,mult

AUTHOR

Michael Somos, Nov 12 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 17:56 EDT 2020. Contains 337180 sequences. (Running on oeis4.)