login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260611 a(n) = superfactorial(prime(n)-1) mod prime(n). 2
1, 2, 3, 6, 1, 8, 13, 1, 1, 17, 1, 6, 9, 1, 46, 30, 58, 50, 1, 1, 27, 78, 82, 34, 22, 10, 102, 106, 76, 15, 126, 1, 37, 138, 105, 1, 28, 1, 1, 93, 1, 19, 190, 81, 14, 198, 210, 1, 1, 107, 144, 1, 64, 250, 16, 262, 82, 1, 60, 53, 282, 155, 306, 1, 288, 203, 330, 189, 1, 136, 42, 1, 366 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Matthew Campbell and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 724 terms from Campbell)

FORMULA

a(n) = A000178(A000040(n)-1) mod A000040(n).

EXAMPLE

a(2) = superfactorial(2) mod 3 = (2!*1!) mod 3 = 2 mod 3 = 2.

MAPLE

a:= proc(n) option remember; local i, p, r, v;

      p, r, v:= ithprime(n), 1$2;

      for i from 2 to p-1 do

        v:= v*i mod p; r:= r*v mod p

      od; r

    end:

seq(a(n), n=1..100);  # Alois P. Heinz, Aug 05 2015

MATHEMATICA

Table[Mod[Superfactorial[Prime[n] - 1], Prime[n]], {n, 1, 175}]

PROG

(PARI) a(n, p=prime(n))=my(t=Mod(1, p)); lift(prod(k=2, p-1, t*=k)) \\ Charles R Greathouse IV, Aug 05 2015

CROSSREFS

The same for hyperfactorials: A260178.

Cf. A000178, A000040.

Sequence in context: A124795 A084459 A093095 * A263502 A002171 A138515

Adjacent sequences:  A260608 A260609 A260610 * A260612 A260613 A260614

KEYWORD

nonn

AUTHOR

Matthew Campbell, Aug 05 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 03:50 EDT 2019. Contains 321450 sequences. (Running on oeis4.)