This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260611 a(n) = superfactorial(prime(n)-1) mod prime(n). 2
 1, 2, 3, 6, 1, 8, 13, 1, 1, 17, 1, 6, 9, 1, 46, 30, 58, 50, 1, 1, 27, 78, 82, 34, 22, 10, 102, 106, 76, 15, 126, 1, 37, 138, 105, 1, 28, 1, 1, 93, 1, 19, 190, 81, 14, 198, 210, 1, 1, 107, 144, 1, 64, 250, 16, 262, 82, 1, 60, 53, 282, 155, 306, 1, 288, 203, 330, 189, 1, 136, 42, 1, 366 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Matthew Campbell and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 724 terms from Campbell) FORMULA a(n) = A000178(A000040(n)-1) mod A000040(n). EXAMPLE a(2) = superfactorial(2) mod 3 = (2!*1!) mod 3 = 2 mod 3 = 2. MAPLE a:= proc(n) option remember; local i, p, r, v;       p, r, v:= ithprime(n), 1\$2;       for i from 2 to p-1 do         v:= v*i mod p; r:= r*v mod p       od; r     end: seq(a(n), n=1..100);  # Alois P. Heinz, Aug 05 2015 MATHEMATICA Table[Mod[Superfactorial[Prime[n] - 1], Prime[n]], {n, 1, 175}] PROG (PARI) a(n, p=prime(n))=my(t=Mod(1, p)); lift(prod(k=2, p-1, t*=k)) \\ Charles R Greathouse IV, Aug 05 2015 CROSSREFS The same for hyperfactorials: A260178. Cf. A000178, A000040. Sequence in context: A124795 A084459 A093095 * A263502 A002171 A138515 Adjacent sequences:  A260608 A260609 A260610 * A260612 A260613 A260614 KEYWORD nonn AUTHOR Matthew Campbell, Aug 05 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 03:50 EDT 2019. Contains 321450 sequences. (Running on oeis4.)