login
A260611
a(n) = superfactorial(prime(n)-1) mod prime(n).
2
1, 2, 3, 6, 1, 8, 13, 1, 1, 17, 1, 6, 9, 1, 46, 30, 58, 50, 1, 1, 27, 78, 82, 34, 22, 10, 102, 106, 76, 15, 126, 1, 37, 138, 105, 1, 28, 1, 1, 93, 1, 19, 190, 81, 14, 198, 210, 1, 1, 107, 144, 1, 64, 250, 16, 262, 82, 1, 60, 53, 282, 155, 306, 1, 288, 203, 330, 189, 1, 136, 42, 1, 366
OFFSET
1,2
LINKS
Matthew Campbell and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 724 terms from Campbell)
FORMULA
a(n) = A000178(A000040(n)-1) mod A000040(n).
EXAMPLE
a(2) = superfactorial(2) mod 3 = (2!*1!) mod 3 = 2 mod 3 = 2.
MAPLE
a:= proc(n) option remember; local i, p, r, v;
p, r, v:= ithprime(n), 1$2;
for i from 2 to p-1 do
v:= v*i mod p; r:= r*v mod p
od; r
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 05 2015
MATHEMATICA
Table[Mod[Superfactorial[Prime[n] - 1], Prime[n]], {n, 1, 175}]
PROG
(PARI) a(n, p=prime(n))=my(t=Mod(1, p)); lift(prod(k=2, p-1, t*=k)) \\ Charles R Greathouse IV, Aug 05 2015
CROSSREFS
The same for hyperfactorials: A260178.
Sequence in context: A346560 A084459 A093095 * A263502 A002171 A138515
KEYWORD
nonn
AUTHOR
Matthew Campbell, Aug 05 2015
STATUS
approved