The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260600 Expansion of x * psi(x^3) * psi(x^12) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions. 1

%I

%S 0,1,1,2,4,6,9,14,20,29,42,58,80,111,149,200,268,353,463,606,784,1011,

%T 1299,1656,2104,2664,3354,4208,5264,6555,8138,10076,12428,15288,18758,

%U 22944,27996,34081,41377,50124,60592,73075,87951,105652,126652,151547,181015

%N Expansion of x * psi(x^3) * psi(x^12) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A260600/b260600.txt">Table of n, a(n) for n = 0..1000</a>

%H Vaclav Kotesovec, <a href="https://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], 2015-2016.

%H M. Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-5/6) * eta(q^6)^2 * eta(q^24)^2 / (eta(q) * eta(q^3) * eta(q^12)) in powers of q.

%F Euler transform of period 24 sequence [1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, -1, ...].

%F -2 * a(n) = A260574(4*n + 3).

%F a(n) ~ exp(sqrt(2*n/3)*Pi) / (24*sqrt(2*n)). - _Vaclav Kotesovec_, Oct 14 2015

%e G.f. = x + x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 14*x^7 + 20*x^8 + ...

%e G.f. = q^11 + q^17 + 2*q^23 + 4*q^29 + 6*q^35 + 9*q^41 + 14*q^47 + ...

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(3/2)] EllipticTheta[ 2, 0, x^6] / ( 4 x^(7/8) QPochhammer[ x]), {x, 0, n}];

%t nmax=60; CoefficientList[Series[x*Product[(1-x^(6*k)) * (1-x^(24*k)) * (1+x^(3*k)) * (1+x^(12*k)) / ((1-x^k)),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Oct 14 2015 *)

%o (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^6 + A)^2 * eta(x^24 + A)^2 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)), n))};

%o (PARI) q='q+O('q^99); concat(0, Vec(eta(q^6)^2*eta(q^24)^2 / (eta(q)*eta(q^3)*eta(q^12)))) \\ _Altug Alkan_, Mar 18 2018

%Y Cf. A260574.

%K nonn

%O 0,4

%A _Michael Somos_, Jul 29 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 22:56 EDT 2020. Contains 337174 sequences. (Running on oeis4.)