%I #24 Sep 29 2021 08:55:19
%S 1,2,4,5,6,8,9,10,12,13,15,16,17,19,20,21,23,24,26,27,28,30,31,32,34,
%T 35,37,38,39,41,42,43,45,46,48,49,50,52,53,54,56,57,59,60,61,63,64,65,
%U 67,68,70,71,72,74,75,76,78,79,81,82,83,85
%N Beatty sequence for e^(1/Pi) = A179706.
%C The initial 634 terms are the same as the formula: a(n) = floor((11*n - 1) / 8). - _Simon Strandgaard_, Sep 24 2021
%H Karl V. Keller, Jr., <a href="/A260483/b260483.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/e.html">e</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Pi.html">Pi</a>
%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F a(n) = floor(n*e^(1/Pi)).
%e For n = 5, floor(5*e^(1/Pi)) = 6.
%t Array[Floor[#*E^(1/Pi)] &, 62] (* _Michael De Vlieger_, Sep 28 2021 *)
%o (Python)
%o from sympy import E, pi, floor
%o for n in range(1,101): print(floor(n*E**(1/pi)), end=', ')
%o (PARI) vector(80, n, floor(n*exp(1/Pi))) \\ _Michel Marcus_, Aug 05 2015
%Y Cf. A179706 (e^(1/Pi)), A260484 (complement).
%K nonn
%O 1,2
%A _Karl V. Keller, Jr._, Jul 26 2015