login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260443 Prime factorization representation of Stern polynomials: a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = a(n)*a(n+1). 91
1, 2, 3, 6, 5, 18, 15, 30, 7, 90, 75, 270, 35, 450, 105, 210, 11, 630, 525, 6750, 245, 20250, 2625, 9450, 77, 15750, 3675, 47250, 385, 22050, 1155, 2310, 13, 6930, 5775, 330750, 2695, 3543750, 128625, 1653750, 847, 4961250, 643125, 53156250, 18865, 24806250, 202125, 727650, 143, 1212750, 282975, 57881250, 29645, 173643750, 1414875, 18191250, 1001 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The exponents in the prime factorization of term a(n) give the coefficients of the n-th Stern polynomial. See A125184 and the examples.

None of the terms have prime gaps in their factorization, i.e., all can be found in A073491.

Contains neither perfect squares nor prime powers with exponent > 1. A277701 gives the positions of the terms that are 2*square. - Antti Karttunen, Oct 27 2016

Many of the derived sequences (like A002487) have similar "Fir forest" or "Gaudian cathedrals" style scatter plot. - Antti Karttunen, Mar 21 2017

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..1024

FORMULA

a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = a(n)*a(n+1).

Other identities. For all n >= 0:

A001221(a(n)) = A277314(n). [#nonzero coefficients in each polynomial.]

A001222(a(n)) = A002487(n). [When each polynomial is evaluated at x=1.]

A048675(a(n)) = n.          [at x=2.]

A090880(a(n)) = A178590(n). [at x=3.]

A248663(a(n)) = A264977(n). [at x=2 over the field GF(2).]

A276075(a(n)) = A276081(n). ["at factorials".]

A156552(a(n)) = A277020(n). [Converted to "unary-binary" encoding.]

A051903(a(n)) = A277315(n). [Maximal coefficient.]

A277322(a(n)) = A277013(n). [Number of irreducible polynomial factors.]

A005361(a(n)) = A277325(n). [Product of nonzero coefficients.]

A072411(a(n)) = A277326(n). [And their LCM.]

A007913(a(n)) = A277330(n). [The squarefree part.]

A000005(a(n)) = A277705(n). [Number of divisors.]

A046523(a(n)) = A278243(n). [Filter-sequence.]

A284010(a(n)) = A284011(n). [True for n > 1. Another filter-sequence.]

A003415(a(n)) = A278544(n). [Arithmetic derivative.]

A056239(a(n)) = A278530(n). [Weighted sum of coefficients.]

A097249(a(n)) = A277899(n).

a(A000079(n)) = A000040(n+1).

a(A000225(n)) = A002110(n).

a(A000051(n)) = 3*A002110(n).

For n >= 1, a(A000918(n)) = A070826(n).

A007949(a(n)) is the interleaving of A000035 and A005811, probably A101979.

A061395(a(n)) = A277329(n).

Also, for all n >= 1:

A055396(a(n)) = A001511(n).

A252735(a(n)) = A061395(a(n)) - 1 = A057526(n).

a(A000040(n)) = A277316(n).

a(A186891(1+n)) = A277318(n). [Subsequence for irreducible polynomials].

EXAMPLE

n    a(n)   prime factorization    Stern polynomial

------------------------------------------------------------

0       1   (empty)                B_0(x) = 0

1       2   p_1                    B_1(x) = 1

2       3   p_2                    B_2(x) = x

3       6   p_2 * p_1              B_3(x) = x + 1

4       5   p_3                    B_4(x) = x^2

5      18   p_2^2 * p_1            B_5(x) = 2x + 1

6      15   p_3 * p_2              B_6(x) = x^2 + x

7      30   p_3 * p_2 * p_1        B_7(x) = x^2 + x + 1

8       7   p_4                    B_8(x) = x^3

9      90   p_3 * p_2^2 * p_1      B_9(x) = x^2 + 2x + 1

MATHEMATICA

a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a@ n, {n, 0, 56}] (* Michael De Vlieger, Apr 05 2017 *)

PROG

(PARI)

A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus

A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ After Charles R Greathouse IV's code for "ps" in A186891.

\\ Antti Karttunen, Oct 11 2016

(Scheme)

;; Uses memoization-macro definec:

(definec (A260443 n) (cond ((<= n 1) (+ 1 n)) ((even? n) (A003961 (A260443 (/ n 2)))) (else (* (A260443 (/ (- n 1) 2)) (A260443 (/ (+ n 1) 2))))))

;; A more standalone version added Oct 10 2016, requiring only an implementation of A000040 and the memoization-macro definec:

(define (A260443 n) (product_primes_to_kth_powers (A260443as_coeff_list n)))

(define (product_primes_to_kth_powers nums) (let loop ((p 1) (nums nums) (i 1)) (cond ((null? nums) p) (else (loop (* p (expt (A000040 i) (car nums))) (cdr nums) (+ 1 i))))))

(definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))

(define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))

(Python)

from sympy import factorint, prime, primepi

from operator import mul

def a003961(n):

    F=factorint(n)

    return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F])

def a(n): return n + 1 if n<2 else a003961(a(n/2)) if n%2==0 else a((n - 1)/2)*a((n + 1)/2)

print [a(n) for n in xrange(101)] # Indranil Ghosh, Jun 21 2017

CROSSREFS

Same sequence sorted into ascending order: A260442.

Cf. A000040, A000079, A000225, A001222, A002487, A003415, A003961, A005811, A007949, A046523, A056239, A073491, A090880, A097249, A101979, A125184, A178590, A186891, A206284, A277314, A277315, A277325, A277326, A277329, A277330, A277701, A277705, A277899, A278243, A278530, A278544, A284010, A284011.

Cf. also A048675, A277333 (left inverses).

Cf. A277323, A277324 (bisections), A277200 (even terms sorted), A277197 (first differences), A277198.

Cf. A277316 (values at primes), A277318.

Cf. A023758 (positions of squarefree terms), A101082 (of terms not squarefree), A277702 (positions of records), A277703 (their values).

Cf. A283992, A283993 (number of irreducible, reducible polynomials in range 1 .. n).

Cf. also A206296 (Fibonacci polynomials similarly represented).

Sequence in context: A222311 A156833 A319344 * A206242 A124655 A066838

Adjacent sequences:  A260440 A260441 A260442 * A260444 A260445 A260446

KEYWORD

nonn,look

AUTHOR

Antti Karttunen, Jul 28 2015

EXTENSIONS

More linking formulas added by Antti Karttunen, Mar 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 10:10 EDT 2019. Contains 324347 sequences. (Running on oeis4.)