

A260434


Permutation of natural numbers: a(1) = 1, a(2n) = A257803(1+a(n)), a(2n+1) = A257804(a(n)), where A257803 and A257804 give the positions of odd and even terms in A233271, the infinite trunk of inverted binary beanstalk.


4



1, 4, 2, 12, 6, 7, 3, 30, 19, 18, 10, 21, 11, 9, 5, 74, 48, 52, 32, 49, 31, 25, 15, 54, 36, 27, 16, 24, 14, 17, 8, 172, 125, 118, 85, 128, 89, 76, 51, 119, 86, 75, 50, 64, 43, 38, 26, 132, 92, 83, 61, 68, 45, 41, 28, 60, 40, 35, 22, 42, 29, 23, 13, 383, 314, 275, 219, 266, 208, 201, 152, 283, 227, 207, 159, 174, 129, 127, 88
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This sequence can be represented as a binary tree. Each left hand child is produced as A257803(1+n), and each right hand child as A257804(n), when the parent contains n:

...................1...................
4 2
12......../ \........6 7......../ \........3
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
30 19 18 10 21 11 9 5
74 48 52 32 49 31 25 15 54 36 27 16 24 14 17 8
etc.
Note how this is a mirror image of the tree shown in A260432.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16383
Index entries for sequences that are permutations of the natural numbers


FORMULA

a(1) = 1, a(2n) = A257803(1+a(n)), a(2n+1) = A257804(a(n)).
As a composition of other permutations:
a(n) = A260432(A054429(n)).
a(n) = A260430(A260432(n)).


PROG

(Scheme, with memoizing macro definec)
(definec (A260434 n) (cond ((<= n 1) n) ((even? n) (A257803 (+ 1 (A260434 (/ n 2))))) (else (A257804 (A260434 (/ ( n 1) 2))))))


CROSSREFS

Inverse: A260433.
Related permutations: A260432, A260430, A054429.
Cf. A257803, A257804, A257807, A257808.
Cf. also A233271, A257806.
Sequence in context: A077015 A077016 A191436 * A243344 A293603 A201825
Adjacent sequences: A260431 A260432 A260433 * A260435 A260436 A260437


KEYWORD

nonn,tabf,look


AUTHOR

Antti Karttunen, Jul 27 2015


STATUS

approved



