login
A260406
Numbers n such that (n-1)^2-1 divides 2^(n-1)-1.
3
1, 3, 5, 17, 37, 257, 457, 1297, 2557, 4357, 6481, 8009, 11953, 26321, 44101, 47521, 47881, 49681, 57241, 65537, 74449, 84421, 97813, 141157, 157081, 165601, 225457, 278497, 310591, 333433, 365941, 403901, 419711, 476737, 557041, 560737, 576721, 647089, 1011961
OFFSET
1,2
COMMENTS
The initial 1 is conventional.
647089 is the smallest composite number of this sequence (which makes it different from A081762).
The next composite number in this sequence is a(1000) = F_5 = 4294967297. - Robert G. Wilson v, Jul 25 2015
The Fermat numbers 2^2^k+1 = A000215(k) with k>1 are a subsequence of this sequence. I conjecture that they are equal to the intersection of this and A260407 (apart from the conventional 1), i.e., the numbers such that (n-1)^4-1 divides 2^(n-1)-1.
LINKS
MATHEMATICA
fQ[n_] := PowerMod[2, n - 1, (n - 1)^2 - 1] == 1; Select[ Range[3, 1200000], fQ] (* Robert G. Wilson v, Jul 25 2015 *)
PROG
(PARI) forstep(n=1, 1e7, 2, Mod(2, (n-1)^2-1)^(n-1)==1&&print1(n", "))
(Magma) [n: n in [3..6*10^5] | (2^(n-1)-1) mod ((n-1)^2-1) eq 0]; // Vincenzo Librandi, Jul 26 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Jul 24 2015
STATUS
approved