login
A260385
Numbers such that n divides A260519(n), where A260519(n) is the concatenation of the positions of the digits 0, 1, ..., 9 in n, positions counted from the right, and 0 if a given digit does not occur.
5
1, 2, 4, 5, 10, 12, 15, 20, 24, 25, 30, 32, 40, 50, 56, 58, 59, 60, 69, 75, 100, 112, 120, 125, 150, 170, 175, 200, 220, 240, 250, 275, 276, 300, 320, 325, 366, 399, 400, 440, 500, 510, 525, 600, 660, 726, 775, 1000, 1250, 2000, 2200, 2360, 2413, 2500, 3142, 3200
OFFSET
1,2
COMMENTS
A260274 is a subset of this sequence
LINKS
EXAMPLE
Consider number 56. We have no digit 0, 1, 2, 3 and 4, one digit 5 in position 2, one digit 6 in position 1 and no digit 7, 8 and 9. Therefore we get 0000021000 and 21000 / 56 = 375.
Consider 774452318582. We have no digit 0, one digit 1 in position 5, two digits 2 in position 1 and 7, one digit 3 in position 6, two digits 4 in position 9 and 10, two digits 5 in position 3 and 8, no digit 6, two digits 7 in position 11 and 12, two digits 8 in position 2 and 4 and no digit 9. Therefore 774452318582 is transformed in 51769103801112240. But 51769103801112240 / 774452318582 = 66846.08278... Therefore 774452318582 is not part of the sequence.
MAPLE
with(numtheory): P:=proc(q) local a, b, j, k, ok, n;
for n from 1 to q do a:=convert(n, base, 10); b:=0;
for k from 0 to 9 do ok:=0; for j from 1 to nops(a) do
if a[j]=k then ok:=1; b:=b*10^(ilog10(j)+1)+j; fi; od;
if ok=0 then b:=10*b; fi; od; if type(b/n, integer) then print(n);
fi; od; end: P(10^9);
PROG
(PARI) for(n=1, 9e9, A260519(n)%n||print1(n", ")) \\ M. F. Hasler, Jul 28 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jul 24 2015
STATUS
approved