

A260351


In base n, a(n) is the largest (decimal equivalent) number reached when one sequentially adds to a sum, starting with zero, the largest digit not in that sum.


2



1, 5, 30, 214, 1865, 22881, 342447, 6053444, 123456798, 2853116815, 73686782411, 2103299351346, 65751519678065, 2234152501943369, 81985529216487165, 3231407272993503256, 136146740744970718253, 6106233505124424781971, 290464265927977839351196
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


LINKS

Hiroaki Yamanouchi, Table of n, a(n) for n = 2..22
Frank AdamsWatters, Add the biggest absent digit, SeqFan list, July 21, 2015


EXAMPLE

In base 4:
0 + 3 = 3 (= 3)
3 + 2 = 5 (= 11)
5 + 3 = 8 (= 20)
8 + 3 = 11 (= 23)
11 + 1 = 12 (= 30)
12 + 2 = 14 (= 32)
14 + 1 = 15 (= 33)
15 + 2 = 17 (= 101)
17 + 3 = 20 (= 110)
20 + 3 = 23 (= 113)
23 + 2 = 25 (= 121)
25 + 3 = 28 (= 130)
28 + 2 = 30 (= 132)
30 + 0 = 30 (repeat, therefore a(4) = 30)


MATHEMATICA

Table[r=Range[0, b1]; s=0; t=1; While[t!=0, t=Complement[r, IntegerDigits[s, b]][[1]]; s=s+t]; s, {b, 2, 8}]


PROG

(Python)
from gmpy2 import digits
def A260351(n):
....r, c = set([digits(d, n) for d in range(n)]), 0
....dc = set(digits(c, n))
....while len(dc) < n1 or '0' in dc:
........c += max([int(d, n) for d in r  dc])
........dc = set(digits(c, n))
....return c # Chai Wah Wu, Jul 24 2015


CROSSREFS

Cf. A260263, A260264.
Sequence in context: A001720 A051829 A323770 * A058247 A137965 A129695
Adjacent sequences: A260348 A260349 A260350 * A260352 A260353 A260354


KEYWORD

nonn,base


AUTHOR

Hans Havermann, Jul 23 2015


EXTENSIONS

a(13) from Giovanni Resta, Jul 23 2015
a(14) from Giovanni Resta, Jul 24 2015
a(15)a(20) from Hiroaki Yamanouchi, Aug 01 2015


STATUS

approved



