The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260334 a(n) = (36*n^6 - 60*n^5 + 30*n^4 + 4*n^3 + 8*n^2 - 4*n + 1 - (-1)^n)/8. 2
 0, 2, 115, 1783, 11758, 49304, 156633, 412589, 949564, 1973662, 3788095, 6819827, 11649450, 19044308, 29994853, 45754249, 67881208, 98286074, 139280139, 193628207, 264604390, 356051152, 472441585, 618944933, 801495348, 1026863894, 1302733783, 1637778859, 2041745314, 2525536652 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 B. T. Bennett and R. B. Potts, Arrays and brooks, J. Austral. Math. Soc., 7 (1967), 23-31. [Annotated scanned copy] See b_{n,3}. Index entries for linear recurrences with constant coefficients, signature (6,-14,14,0,-14,14,-6,1). FORMULA G.f.: -x*(17*x^6+487*x^5+2108*x^4+2642*x^3+1121*x^2+103*x+2) / ((x-1)^7*(x+1)). - Colin Barker, Jul 29 2015 MATHEMATICA Table[(36n^6-60n^5+30n^4+4n^3+8n^2-4n+1-(-1)^n)/8, {n, 0, 30}] (* or *) LinearRecurrence[{6, -14, 14, 0, -14, 14, -6, 1}, {0, 2, 115, 1783, 11758, 49304, 156633, 412589}, 30] (* Harvey P. Dale, Apr 14 2020 *) PROG (PARI) concat(0, Vec(-x*(17*x^6 +487*x^5 +2108*x^4 +2642*x^3 +1121*x^2 +103*x +2) / ((x -1)^7*(x +1)) + O(x^100))) \\ Colin Barker, Jul 29 2015 CROSSREFS Conjectured to be the 4th diagonal of A260333. Sequence in context: A209184 A065670 A105327 * A257939 A203607 A188977 Adjacent sequences:  A260331 A260332 A260333 * A260335 A260336 A260337 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jul 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 29 20:41 EDT 2020. Contains 338073 sequences. (Running on oeis4.)