login
Numerator of generalized Bernoulli number B_n^{(n-1)}.
1

%I #22 Jan 25 2020 05:59:57

%S 1,-1,19,-9,4315,-1375,237671,-114562,9751299,-9458775,150653570023,

%T -24466579093,1719676921651,-1681457720761,111956703448001,

%U -18293695492500,515820397142126323,-168930583738812489,234948724145929620551,-161867055619224199787,146676714003698721466337

%N Numerator of generalized Bernoulli number B_n^{(n-1)}.

%H N. E. Nørlund, <a href="http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN373206070">Vorlesungen ueber Differenzenrechnung</a>, Springer 1924, p. 461.

%H N. E. Nörlund, <a href="/A001896/a001896_1.pdf">Vorlesungen über Differenzenrechnung</a>, Springer-Verlag, Berlin, 1924; page 461 [Annotated scanned copy of pages 144-151 and 456-463]

%t a[n_] := Integrate[(n-t-1)*Pochhammer[t-n+2, n-1], {t, 0, 1}]*(n-1) // Numerator;

%t a /@ Range[2, 12] (* _Jean-François Alcover_, Jan 24 2020, from the formula used in the bisections *)

%Y Denominators: A260329.

%Y Bisections: A213450, A213448.

%K sign,frac

%O 2,3

%A _N. J. A. Sloane_, Jul 25 2015

%E More terms from _Jean-François Alcover_, Jan 25 2020