login
A260297
a(n) = prime(n) - (hyperfactorial(prime(n)-1) mod prime(n)).
3
1, 2, 2, 6, 1, 5, 4, 1, 1, 12, 1, 31, 32, 1, 46, 23, 58, 11, 1, 1, 46, 78, 82, 55, 75, 91, 102, 106, 33, 98, 126, 1, 100, 138, 44, 1, 129, 1, 1, 80, 1, 162, 190, 112, 183, 198, 210, 1, 1, 122, 89, 1, 177, 250, 241, 262, 187, 1, 217, 228, 282, 138, 306, 1, 25
OFFSET
1,2
LINKS
FORMULA
a(n) = prime(n) - A260178(n).
EXAMPLE
a(1) = prime(1) - (hyperfactorial(prime(1)-1)) mod prime(1) = 2 - hyperfactorial(2-1) mod (2) = 2 - 1 mod 2 = 2 - 1 = 1.
MATHEMATICA
Table[Prime[n] - Mod[Hyperfactorial[Prime[n] - 1], Prime[n]], {n, 1, 70}]
PROG
(PARI) a(n, p=prime(n))=lift(-prod(k=1, p-1, Mod(k, p)^k)) \\ Charles R Greathouse IV, Jul 23 2015
CROSSREFS
Cf. A000040, A002109, A260178 (hyperfactorial(prime(n)-1) mod (prime(n))).
Sequence in context: A047916 A101207 A186435 * A199476 A209124 A155818
KEYWORD
nonn,easy
AUTHOR
Matthew Campbell, Jul 22 2015
STATUS
approved