login
A260272
Decimal expansion of Sum_{n>=1} H(n)^2/(n+1)^4, where H(n) is the n-th harmonic number.
0
1, 2, 3, 4, 6, 3, 0, 8, 8, 7, 9, 2, 3, 9, 1, 5, 2, 3, 1, 4, 6, 1, 9, 6, 7, 2, 9, 6, 2, 0, 6, 8, 1, 3, 1, 9, 9, 9, 8, 2, 3, 3, 2, 2, 4, 7, 0, 3, 4, 2, 7, 2, 3, 3, 7, 0, 8, 9, 4, 5, 8, 6, 1, 7, 7, 4, 7, 6, 1, 5, 9, 2, 5, 0, 9, 1, 6, 4, 3, 2, 3, 9, 3, 6, 4, 1, 6, 7, 8, 4, 1, 3, 6, 7, 2, 4, 2, 4, 0, 5, 7, 4, 2, 4, 8
OFFSET
0,2
FORMULA
(37/22680)*Pi^6 - zeta(3)^2.
EXAMPLE
0.1234630887923915231461967296206813199982332247034272337089458617747615925...
MATHEMATICA
RealDigits[(37/22680)*Pi^6 - Zeta[3]^2, 10, 105] // First
CROSSREFS
Cf. A244676.
Sequence in context: A280244 A203138 A249900 * A321479 A128332 A074103
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved