login
A260237
Numerators of the characteristic polynomials of the von Mangoldt function matrix.
3
0, 1, -1, -1, -1, 1, 1, 11, -1, -1, 0, -3, -9, 5, 1, 0, 3, 81, 7, -73, -1, 0, 3, 73, -1261, -1183, 53, 1, 0, -3, -1231, 5251, 8989, 1451, -731, -1, 0, 0, 7, 397, -12491, -19877, -15047, 1567, 1, 0, 0, 0, -7, -1483, 50111, 69761, 45959, -5261, -1
OFFSET
1,8
COMMENTS
The von Mangoldt function matrix is the symmetric matrix A191898 divided by either the row index or the column index.
Every eigenvalue of a smaller von Mangoldt function matrix appears to be common to infinitely many larger von Mangoldt matrices. The eigenvalues of smaller von Mangoldt function matrices also repeat within larger von Mangoldt function matrices.
EXAMPLE
The first term set to zero is not part of the characteristic polynomials. It is only there for the formatting of the table.
{
{0},
{1, -1},
{-1, -1, 1},
{1, 11, -1, -1},
{0, -3, -9, 5, 1},
{0, 3, 81, 7, -73, -1},
{0, 3, 73, -1261, -1183, 53, 1},
{0, -3, -1231, 5251, 8989, 1451, -731, -1},
{0, 0, 7, 397, -12491, -19877, -15047, 1567, 1},
{0, 0, 0, -7, -1483, 50111, 69761, 45959, -5261,-1}
}
MATHEMATICA
Clear[nnn, nn, T, n, k, x]; nnn = 9; T[n_, k_] := T[n, k] = Which[n < 1 || k < 1, 0, n == 1 || k == 1, 1, k > n, T[k, n], n > k, T[k, Mod[n, k, 1]], True, -Sum[T[n, i], {i, n - 1}]]; b = Table[CoefficientList[CharacteristicPolynomial[Table[Table[T[n, k]/n, {k, 1, nn}], {n, 1, nn}], x], x], {nn, 1, nnn}]; Flatten[{0, Numerator[b]}]
CROSSREFS
Denominators in A260238.
Sequence in context: A294254 A216792 A359215 * A118135 A318671 A337335
KEYWORD
tabl,sign,frac
AUTHOR
Mats Granvik, Jul 20 2015
STATUS
approved