login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260228 a(n) = max(gcd(n,F(n-1)),gcd(n,F(n+1))), where F(n) is the n-th Fibonacci number. 2

%I

%S 1,2,3,2,1,1,7,2,3,2,11,1,13,2,3,2,17,1,19,2,3,2,23,1,1,2,3,2,29,1,31,

%T 2,3,2,1,1,37,2,3,2,41,1,43,2,3,2,47,1,7,2,3,2,53,1,1,2,3,2,59,1,61,2,

%U 21,2,1,1,67,2,3,2,71,1,73,2,3,2,1,13,79,2,3,2,83,1,1,2,3,2,89,1,1,2,3,2,1,1,97,2,33,2

%N a(n) = max(gcd(n,F(n-1)),gcd(n,F(n+1))), where F(n) is the n-th Fibonacci number.

%C This sequence seems very good at generating primes. Many primes p are generated when a(p)=p. In fact for n<=10000, a(n)=n occurs 1242 times and 1228 of these times n is prime. When n is a composite we often have a(n)<n. However, there are exceptions to this rule and for n<=10000 they are: 323, 377, 442, 1891, 2737, 2834, 3827, 4181, 5777, 6479, 6601, 6721 and 8149 (see A182554).

%C For n<=1000000 and a(n)=n this sequence generates all primes in the given range (except 5) and produces a prime 99.73% of the time.

%C It is known that if p is a prime greater than 5 then either F(p-1) or F(p+1) is a multiple of p (see Lawrence and Burton references) and so for those cases we have a(p)=p.

%D David M. Burton, Elementary Number Theory, Allyn and Bacon, p. 292, 1980.

%H Dmitry Kamenetsky, <a href="/A260228/b260228.txt">Table of n, a(n) for n = 1..10000</a>

%H D. E. Daykin and L. A. G. Dresel, <a href="http://www.fq.math.ca/Scanned/8-1/daykin-a.pdf">Factorization of Fibonacci numbers</a>, Fibonacci Quarterly 8:1 (1970), pp. 23-30.

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibtable.html">Factorisation of the first 300 Fibonacci numbers</a>

%H Brian Lawrence, <a href="http://math.stanford.edu/~brianrl/notes/fibonacci.pdf">Fibonacci numbers modulo p</a>, Stanford SUMO talk, 2014.

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/PrimeFormulas.html">MathWorld: Prime Formulas</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Formula_for_primes">Formula for primes</a>

%e a(2) = max(gcd(2,F(1)),gcd(2,F(3))) = max(1,2)=2.

%e a(11) = max(gcd(11,F(10)),gcd(11,F(12))) = max(gcd(11,55),gcd(11,144)) = max(11,1) = 11.

%e a(13) = max(gcd(13,144),gcd(13,377)) = 13.

%e a(23) = max(gcd(23,17711),gcd(23,46368)) = 23.

%t Table[Max[GCD[n, Fibonacci[n - 1]], GCD[n, Fibonacci[n + 1]]], {n, 1, 80}] (* _Vincenzo Librandi_, Jul 20 2015 *)

%o (MAGMA) [Max(Gcd(n,Fibonacci(n-1)),Gcd(n,Fibonacci(n+1))): n in [1..90]]; // _Vincenzo Librandi_, Jul 20 2015

%o (PARI) first(m)=vector(m,n,max(gcd(n,fibonacci(n-1)),gcd(n,fibonacci(n+1)))) /* _Anders Hellström_, Jul 20 2015 */

%Y Cf. A106108, A182554, A260222.

%K nonn

%O 1,2

%A _Dmitry Kamenetsky_, Jul 20 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 03:48 EDT 2020. Contains 333136 sequences. (Running on oeis4.)