|
|
A260224
|
|
Primes that contain only the digits (1, 3, 5).
|
|
2
|
|
|
3, 5, 11, 13, 31, 53, 113, 131, 151, 311, 313, 331, 353, 1151, 1153, 1511, 1531, 1553, 3313, 3331, 3511, 3533, 5113, 5153, 5333, 5351, 5531, 11113, 11131, 11311, 11351, 11353, 11551, 13151, 13313, 13331, 13513, 13553, 15131, 15313, 15331, 15511, 15551
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A020451, A020453 and A020462 are subsequences.
|
|
LINKS
|
Chai Wah Wu, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
Select[Prime[Range[3 10^3]], Complement[IntegerDigits[#], {3, 5, 1}]=={} &]
Select[Flatten[Table[FromDigits/@Tuples[{1, 3, 5}, n], {n, 5}]], PrimeQ] (* Harvey P. Dale, Mar 03 2020 *)
|
|
PROG
|
(MAGMA) [p: p in PrimesUpTo(40000) | Set(Intseq(p)) subset [3, 5, 1]];
(Python)
from gmpy2 import is_prime, mpz
from itertools import product
A260224_list = [int(''.join(x)) for n in range(1, 10) for x in product('135', repeat=n) if is_prime(mpz(''.join(x)))] # Chai Wah Wu, Jul 21 2015
|
|
CROSSREFS
|
Cf. Similar sequences listed in A260223.
Cf. A020451, A020453, A020462.
Sequence in context: A265396 A216553 A250298 * A105071 A089251 A147568
Adjacent sequences: A260221 A260222 A260223 * A260225 A260226 A260227
|
|
KEYWORD
|
nonn,easy,base
|
|
AUTHOR
|
Vincenzo Librandi, Jul 21 2015
|
|
STATUS
|
approved
|
|
|
|