login
A260179
Primes pr(k) such that pr(k)+pr(k+1)+pr(k+6)+pr(k+7) = pr(k+2)+pr(k+3)+pr(k+4)+pr(k+5).
3
17, 23, 71, 149, 173, 233, 331, 359, 389, 419, 431, 503, 677, 727, 839, 853, 937, 971, 1019, 1201, 1229, 1277, 1327, 2213, 2221, 2237, 2593, 2689, 2797, 2999, 3019, 3167, 3221, 3253, 3821, 3823, 4027, 4111, 4201, 4219, 4231, 4801, 5147, 5309, 5407, 5437
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..500 from R. J. Mathar)
EXAMPLE
Starting from 71, the eight consecutive primes are 71, 73, 79, 83, 89, 97, 101, 103; and they satisfy 71+73+101+103=79+83+89+97, so 71 is in the sequence.
MAPLE
n := 1 ;
Lp := [[0, 1, 6, 7], [2, 3, 4, 5]] ;
for i from 1 do
if add(ithprime(i+j), j=op(1, Lp)) = add(ithprime(i+j), j=op(2, Lp)) then
printf("%d %d\n", n, ithprime(i)) ;
n := n+1 ;
end if;
end do: # R. J. Mathar, Aug 06 2015
MATHEMATICA
pr8Q[lst_]:=With[{tadr=TakeDrop[lst, {3, 6}]}, Total[tadr[[1]]] == Total[ tadr[[2]]]]; Transpose[Select[Partition[Prime[ Range[ 1000]], 8, 1], pr8Q]][[1]] (* The program uses the TakeDrop function from Mathematica version 10.2 *)
CROSSREFS
Cf. A022885.
Sequence in context: A039319 A043142 A043922 * A100473 A060252 A127924
KEYWORD
nonn
AUTHOR
Harvey P. Dale, Jul 17 2015
STATUS
approved