This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260075 Where the first 3n primes are partitioned into 3 sets of cardinality n, the minimum of the largest product. 3
5, 35, 627, 20553, 859066, 48993082, 3441790495, 287535325407, 28839054633794, 3161858853009549, 416108939893639594, 60850811089314245258, 9874934149007840709407, 1754123227439445139773155 (list; graph; refs; listen; history; text; internal format)



Distinct from the smallest product of n primes from the first 3n that is larger than the cube root of the (3n)-th primorial. Both this sequence and that (hypothetical) one are analogs of A260079.

The below PARI program runs through each product of n primes up to the (3n)-th, testing it for whether it is both greater than the cube root of the (3n)-th primorial and less than the smallest result to that point; and, if these limitations are met, it then goes on to determine whether or not the remaining primes can be split into n-cardinality halves with products both less than it.

The percentages by which a(n) exceeds the (3n)-th primorial's cube root are 60.9, 12.6, 3.38, 5.37, 1.02, 0.0883, 0.0340, 5.18*10^(-3), 5.01*10^(-4), 1.68*10^(-4), 2.37*10^(-5), 2.06*10^(-5), 3.87*10^(-5) and 1.14*10^(-6).


James G. Merickel, Table of n, a(n) for n = 1..14


There are 15 distinct ways to break a set of six elements into three of cardinality 2 each. Among these for the first 6 primes, the partition {{2,13}, {3,11}, {5,7}} can be readily seen to give smallest possible maximum product of 35. So a(2)=35 (and with the convention that the product of a set consisting of one number is that number, a(1)=5 trivially).




p=vector(60, n, prime(n)); i=1; while(1,

  a=vectorsmall(3*i); for(j=1, i, a[j]=1);

  n=prod(j=1, i, p[j]); r=10^1000;

  P=prod(j=1, 3*i, p[j]); Q=P^(1/3);


  for(j=2*i+1, 3*i, b[j]=1);


    if(n<r && n>Q,

        R=P/n; c=vector(2*i); k=1;

        for(j=1, 2*i, while(a[k], k++);

          c[j]=k; k++);

        d=vectorsmall(2*i); for(j=1, i, d[j]=1);

        e=vectorsmall(2*i); for(j=i+1, 2*i, e[j]=1);

        S=prod(j=1, i, p[c[j]]);


          if(S<n && R/S<n, r=n; break());



            k=1; if(d[1]==0,

              while(d[k]==0, k++); z=1;

              while(d[k+1], S*=p[c[z]]/p[c[k]];

                d[z]=1; d[k]=0; z++; k++);

              d[k+1]=1; d[k]=0; S*=p[c[k+1]]/p[c[k]],

              while(d[k+1], k++); d[k]=0; d[k+1]=1;



    print1(r" "); break(),

    k=1; if(a[1]==0,

      while(a[k]==0, k++); z=1;

      while(a[k+1], n*=p[z]/p[k]; a[z]=1; a[k]=0; z++; k++);

      n*=p[k+1]/p[k]; a[k]=0; a[k+1]=1,

      while(a[k+1], k++); a[k]=0; a[k+1]=1; n*=p[k+1]/p[k]))); i++)



Cf. A260079.

Sequence in context: A194927 A089043 A317995 * A317816 A034236 A058015

Adjacent sequences:  A260072 A260073 A260074 * A260076 A260077 A260078




James G. Merickel, Jul 14 2015



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 13:58 EDT 2019. Contains 325254 sequences. (Running on oeis4.)