This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260072 Primes p such that (p-1)^2+1 divides 2^(p-1)-1. 2
 17, 257, 8209, 65537, 649801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(6), if it exists, is larger than 1.7*10^12. - Giovanni Resta, Jul 23 2015 N = 1382401 is the smallest composite number such that (n-1)^2+1 divides 2^(n-1)-1, cf. A260407; see also A081762 and A260406. The sequence contains all Fermat primes 2^2^k+1 > 5 (A019434). - M. F. Hasler, Jul 24 2015 LINKS EXAMPLE 17 is in this sequence because (17 - 1)^2 + 1 = 257 divides 2^(17 - 1) - 1 = 65535; 65535 / 257 = 255. MATHEMATICA fQ[n_] := PowerMod[2, n-1, (n-1)^2 + 1] == 1; p = 2; lst = {}; While[p < 10^9, If[ fQ@ p, AppendTo[lst, p]]; p = NextPrime@ p] (* Robert G. Wilson v, Jul 24 2015 *) PROG (MAGMA) [n: n in [1..2000000] | IsPrime(n) and (2^(n-1)-1) mod ((n-1)^2 + 1) eq 0] CROSSREFS Cf. A081762 (primes p such that (p-1)^2 - 1 divides 2^(p-1) - 1). Sequence in context: A098302 A090457 A174408 * A260407 A193329 A256499 Adjacent sequences:  A260069 A260070 A260071 * A260073 A260074 A260075 KEYWORD nonn,more AUTHOR Jaroslav Krizek, Jul 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 01:14 EDT 2019. Contains 326136 sequences. (Running on oeis4.)