login
Triangle read by rows giving numbers H(n,k), number of classes of twin-tree-rooted maps with n edges whose root bond contains k edges.
2

%I #19 Jul 23 2015 04:07:34

%S 1,8,1,72,15,1,720,190,24,1,7780,2345,415,35,1,89040,29127,6384,798,

%T 48,1,1064644,367248,93324,15162,1400,63,1,13173216,4708344,1332528,

%U 261708,32400,2292,80,1,167522976,61343667,18829650,4271652,657198,63690,3555,99,1,2178520080,811147590,265116720,67358500,12269312,1506615,117040,5280,120,1

%N Triangle read by rows giving numbers H(n,k), number of classes of twin-tree-rooted maps with n edges whose root bond contains k edges.

%C See Mullin (1967) for precise definition.

%C The sequence 1, 8, 72, 720,... in the first column has the same values as in A260039.

%H R. C. Mullin, <a href="http://dx.doi.org/10.1016/S0021-9800(67)80001-2">On the average activity of a spanning tree of a rooted map</a>, J. Combin. Theory, 3 (1967), 103-121.

%H R. C. Mullin, <a href="/A260039/a260039.pdf">On the average activity of a spanning tree of a rooted map</a>, J. Combin. Theory, 3 (1967), 103-121. [Annotated scanned copy]

%F (k+1)*T(n,k) = A260039(n,k), n>=1, 0<=k<n. [Mullin Eq. (7.1)]

%F Conjecture: T(n,n-2) = A005563(n) = 8, 15, 24,.... for n>=2. - _R. J. Mathar_, Jul 22 2015

%F Conjecture: T(n,n-3)= (n+1)*n*(5*n^2+7*n+6)/12 = 72, 190,.... for n>=3. - _R. J. Mathar_, Jul 22 2015

%e Triangle begins:

%e 1,

%e 8,1,

%e 72,15,1,

%e 720,190,24,1,

%e ...

%Y Row sums are A260041.

%K nonn,tabl

%O 1,2

%A _N. J. A. Sloane_, Jul 22 2015