%I #4 Jul 13 2015 08:47:00
%S 828,2738,18356,84050,294336,1210568,5674360,24724512,101249348,
%T 428893472,1872332800,8043685448,34055537824,145297154312,
%U 624337715924,2672815345922,11402714613024,48733917928200,208637923678800
%N Number of (n+2)X(6+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00000101 00010101 or 01010101
%C Column 6 of A260015
%H R. H. Hardin, <a href="/A260013/b260013.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) +20*a(n-3) +125*a(n-4) -59*a(n-5) +18*a(n-6) -729*a(n-7) -3826*a(n-8) +489*a(n-9) +532*a(n-10) +7403*a(n-11) +38557*a(n-12) -313*a(n-13) -3705*a(n-14) -29029*a(n-15) -166609*a(n-16) -5164*a(n-17) +1596*a(n-18) +44987*a(n-19) +326610*a(n-20) +1811*a(n-21) +7895*a(n-22) -34542*a(n-23) -295044*a(n-24) +7102*a(n-25) -5217*a(n-26) +14136*a(n-27) +117306*a(n-28) -4662*a(n-29) +351*a(n-30) -2889*a(n-31) -18387*a(n-32) +729*a(n-33) +243*a(n-35) +729*a(n-36) for n>37
%e Some solutions for n=4
%e ..0..0..0..1..0..0..0..1....0..0..0..1..0..0..0..1....0..0..0..1..0..1..0..1
%e ..1..0..1..0..1..0..1..0....1..0..1..0..1..0..0..0....1..0..1..0..0..0..1..0
%e ..0..1..0..1..0..1..0..1....0..1..0..1..0..1..0..1....0..1..0..1..0..1..0..1
%e ..1..0..1..0..1..0..1..0....0..0..1..0..1..0..1..0....0..0..1..0..1..0..1..0
%e ..0..0..0..1..0..1..0..1....0..1..0..0..0..1..0..0....0..0..0..1..0..0..0..1
%e ..1..0..1..0..0..0..0..0....0..0..1..0..1..0..0..0....0..0..1..0..1..0..1..0
%Y Cf. A260015
%K nonn
%O 1,1
%A _R. H. Hardin_, Jul 13 2015