%I #17 Jul 18 2015 16:59:40
%S 3,13,213,213,50213,350213,1350213,21350213,221350213,2221350213,
%T 52221350213,152221350213,5152221350213,55152221350213,
%U 155152221350213,4155152221350213,14155152221350213,314155152221350213,1314155152221350213,21314155152221350213
%N This sequence and A259989 are base-6 analogs of A007185 and A016090, written in base 6.
%C See Schut (1991) for precise definition.
%C Ignoring repetitions, the subsequence of A201821 of terms ending in 3. - _Eric M. Schmidt_, Jul 18 2015
%D C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.
%H Eric M. Schmidt, <a href="/A259988/b259988.txt">Table of n, a(n) for n = 1..1000</a>
%o (Sage) def a(n) : return Integer(crt(1, 0, 2^n, 3^n).str(6)) # _Eric M. Schmidt_, Jul 18 2015
%Y Cf. A007185, A016090, A201821, A237583, A259986-A259991.
%K nonn,base
%O 1,1
%A _N. J. A. Sloane_, Jul 13 2015
%E More terms from _Eric M. Schmidt_, Jul 18 2015