login
A259929
Value of DIS (Decimal Integer Series) constant based on the sequence of cubes.
1
1, 0, 1, 6, 7, 9, 7, 7, 3, 8, 2, 7, 6, 8, 8, 8, 1, 7, 7, 0, 4, 4, 6, 3, 7, 4, 7, 3, 1, 6, 2, 4, 5, 5, 4, 3, 5, 5, 6, 6, 8, 8, 2, 7, 7, 5, 1, 2, 3, 4, 7, 3, 8, 7, 2, 6, 3, 1, 9, 3, 0, 6, 2, 0, 8, 3, 1, 7, 5, 5, 0, 9, 8, 4, 4, 0, 6, 3, 9, 0, 4, 0, 9, 9, 8, 6, 0, 8, 0, 6, 8, 8, 3, 3, 9, 9, 8, 2, 4, 7
OFFSET
0,4
FORMULA
Equals sum_{n>=1} c/100^A055642(c) where c=A000578(n).
EXAMPLE
Equals 0.10167977382768881770446374731...
MAPLE
Digits := 220 ;
x := 0.0 ;
for ndigs from 1 to 200 do
# 10^(ndigs-1)<= n^3 < 10^ndigs
nmin := ceil(10^((ndigs-1)/3)) ;
nmax := floor( root[3](10^(ndigs)-1) ) ;
if nmax >= nmin then
# sum nmin^3.. nmax^3
csu := A000537(nmax)-A000537(nmin-1) ;
x := x+evalf(csu/100^ndigs) ;
printf("%.120f\n", x) ;
end if;
end do:
CROSSREFS
Sequence in context: A019741 A197634 A011482 * A053007 A094868 A131956
KEYWORD
nonn,cons,base
AUTHOR
R. J. Mathar, Jul 09 2015
STATUS
approved