login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259928 Decimal expansion of the infinite double sum S = Sum_{m>=1} (Sum_{n>=1} 1/(m^2*n*(m+n)^3)). 0
1, 6, 9, 5, 5, 7, 1, 7, 6, 9, 9, 7, 4, 0, 8, 1, 8, 9, 9, 5, 2, 4, 1, 9, 6, 5, 4, 9, 6, 5, 1, 5, 3, 4, 2, 1, 3, 1, 6, 9, 6, 9, 5, 8, 1, 6, 7, 2, 1, 4, 2, 2, 6, 0, 3, 0, 7, 0, 6, 8, 1, 1, 0, 6, 6, 7, 3, 8, 8, 6, 9, 7, 1, 5, 0, 3, 2, 6, 3, 1, 6, 3, 1, 3, 7, 9, 5, 6, 6, 2, 9, 8, 9, 7, 5, 5, 8, 6, 1, 7, 5, 5, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..102.

StackExchange, Integral of polylogarithms and logs in closed form

Eric Weisstein's MathWorld, Polygamma Function.

Wikipedia, Polygamma Function.

FORMULA

S = (7/4)*zeta(6) - zeta(3)^2/2 - sum_{m>=1} (PolyGamma(1, m+1)/m^4) + (1/2)*sum_{m>=1} (PolyGamma(2, m+1)/m^3), where sum_{m>=1} (PolyGamma(1, m+1)/m^4) is A258989, the second sum being  A259927.

S simplifies to zeta(6)/6 = Pi^6/5670.

2*A258987 + 6*S = zeta(3)^2.

EXAMPLE

0.16955717699740818995241965496515342131696958167214226030706811...

MATHEMATICA

RealDigits[Pi^6/5670, 10, 103] // First

PROG

(PARI) Pi^6/5670 \\ Michel Marcus, Jul 09 2015

CROSSREFS

Cf. A258987, A258989, A259927.

Sequence in context: A003562 A199445 A201297 * A289265 A301869 A198818

Adjacent sequences:  A259925 A259926 A259927 * A259929 A259930 A259931

KEYWORD

nonn,cons,easy

AUTHOR

Jean-Fran├žois Alcover, Jul 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 11:24 EDT 2020. Contains 337393 sequences. (Running on oeis4.)