login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259920 Expansion of phi(-x^5) * f(-x^5) / f(-x, -x^4) in powers of x where phi() and f() are Ramanujan theta functions. 1
1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 5, 3, 5, 2, 6, 3, 6, 3, 7, 4, 7, 5, 9, 5, 9, 5, 11, 6, 11, 7, 14, 7, 15, 9, 17, 9, 17, 9, 21, 11, 21, 12, 25, 13, 25, 15, 29, 16, 31, 17, 35, 19, 37, 21, 42, 22, 44, 25, 49, 27, 52, 29, 58, 32, 61 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).

REFERENCES

Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, 8th equation.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of f(-x^5)^3 / (f(-x^10) * f(-x^2, -x^3)) in powers of x where f(,) is the Ramanujan general theta function.

Expansion of phi(-x^5) * G(x) in powers of x where f(,) is the Ramanujan general theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jul 09 2015

Euler transform of period 10 sequence [ 1, 0, 0, 1, -2, 1, 0, 0, 1, -1, ...].

G.f.: (Sum_{k in Z} (-1)^k * x^(5*k^2)) / (Product_{k in Z} 1 - x^abs(5*k + 1)).

EXAMPLE

G.f. = 1 + x + x^2 + x^3 + 2*x^4 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + x^11 + ...

G.f. = q^-1 + q^59 + q^119 + q^179 + 2*q^239 + q^359 + q^419 + 2*q^479 + q^539 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^5] / (QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}];

a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ -1, 0, 0, -1, 2, -1, 0, 0, -1, 1}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}];

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^ [1, -1, 0, 0, -1, 2, -1, 0, 0, -1][k%10+1]), n))};

CROSSREFS

Cf. A053256, A053266.

Sequence in context: A066360 A061358 A025866 * A048881 A026931 A127506

Adjacent sequences:  A259917 A259918 A259919 * A259921 A259922 A259923

KEYWORD

nonn

AUTHOR

Michael Somos, Jul 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 06:46 EST 2020. Contains 332220 sequences. (Running on oeis4.)