login
A259913
Discriminant of the number field containing the number with periodic continued fraction [1,n,1,n,1,n,...].
3
5, 12, 21, 8, 5, 60, 77, 24, 13, 140, 165, 12, 221, 28, 285, 5, 357, 44, 437, 120, 21, 572, 69, 168, 29, 780, 93, 56, 957, 1020, 1085, 8, 1221, 1292, 1365, 40, 1517, 1596, 1677, 440, 205, 1932, 2021, 33, 5, 92, 2397, 156, 53, 12, 2805, 728, 3021, 348, 3245
OFFSET
1,1
COMMENTS
a(n) is the first term in row n of the triangle at A259911.
It appears that a(n) = 5 if n is a nonzero term of A004146.
LINKS
EXAMPLE
[1,3,1,3,1,3,...] = (1/6)(3 + sqrt(21)), so that a(3) = 21.
MATHEMATICA
v = Table[FromContinuedFraction[{1, {n, 1}}], {n, 1, 60}];
Flatten[NumberFieldDiscriminant[v]]
CROSSREFS
Cf. A259911.
Sequence in context: A266937 A270214 A063559 * A224824 A121291 A272012
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 20 2015
STATUS
approved