login
A259885
a(n) = max{T(n,k), k=1..n}, where T(n,k) is the number of Dyck paths of length 2n and height k (1<=k<=n).
4
1, 1, 3, 7, 18, 57, 169, 484, 1684, 5661, 18579, 59917, 214058, 760487, 2665884, 9246276, 31945379, 117939506, 431530926, 1567159901, 5655480303, 20299352107, 74300429926, 278279597781, 1037075511926, 3848154018734, 14224439297732, 52402156308977
OFFSET
1,3
LINKS
FORMULA
a(n) ~ 4*K/sqrt(Pi) * 4^n/n^2, where K = 0.2675... (see A265180). - Gheorghe Coserea, Dec 05 2015
EXAMPLE
For n=4, a(4)=7 because T(4,1)=1, T(4,2)=7, T(4,3)=5, T(4,4)=1.
CROSSREFS
Cf. A080936, A259899 (position of maximum), A265180.
Sequence in context: A276906 A062416 A366578 * A110578 A134045 A079898
KEYWORD
nonn,walk
AUTHOR
Gheorghe Coserea, Jul 07 2015
STATUS
approved