The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259844 Number A(n,k) of n X n upper triangular matrices (m_{i,j}) of nonnegative integers with k = Sum_{j=h..n} m_{h,j} - Sum_{i=1..h-1} m_{i,h} for all h in {1,...,n}; square array A(n,k), n>=0, k>=0, read by antidiagonals. 4
 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 7, 1, 1, 1, 4, 22, 40, 1, 1, 1, 5, 50, 351, 357, 1, 1, 1, 6, 95, 1686, 11275, 4820, 1, 1, 1, 7, 161, 5796, 138740, 689146, 96030, 1, 1, 1, 8, 252, 16072, 1010385, 25876312, 76718466, 2766572, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS A(n,k) counts generalized Tesler matrices.  For the definition of Tesler matrices see A008608. LINKS Alois P. Heinz, Antidiagonals n = 0..15, flattened EXAMPLE A(2,2) = 3: [1,1; 0,3], [2,0; 0,2], [0,2; 0,4]. Square array A(n,k) begins:   1,   1,     1,      1,       1,       1, ...   1,   1,     1,      1,       1,       1, ...   1,   2,     3,      4,       5,       6, ...   1,   7,    22,     50,      95,     161, ...   1,  40,   351,   1686,    5796,   16072, ...   1, 357, 11275, 138740, 1010385, 5244723, ... MAPLE b:= proc(n, i, l, k) option remember; (m-> `if`(m=0, 1,       `if`(i=0, b(l[1]+k, m-1, subsop(1=NULL, l), k), add(       b(n-j, i-1, subsop(i=l[i]+j, l), k), j=0..n))))(nops(l))     end: A:= (n, k)-> b(k, n-1, [0\$(n-1)], k): seq(seq(A(n, d-n), n=0..d), d=0..10); MATHEMATICA b[n_, i_, l_List, k_] := b[n, i, l, k] = Function[{m}, If[m == 0, 1, If[i == 0, b[l[[1]] + k, m-1, ReplacePart[l, 1 -> Sequence[]], k], Sum[b[n-j, i-1, ReplacePart[l, i -> l[[i]]+j], k], {j, 0, n}]]]][Length[l]]; A[n_, k_] := b[k, n-1, Array[0&, n-1], k]; A[0, _] = A[_, 0] = 1; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *) CROSSREFS Columns k=0-2 give: A000012, A008608, A259919. Rows n=0+1,2-3 give: A000012, A000027(k+1), A002412(k+1). Sequence in context: A326323 A257493 A296526 * A112707 A196017 A251660 Adjacent sequences:  A259841 A259842 A259843 * A259845 A259846 A259847 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Jul 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 19:34 EST 2020. Contains 331175 sequences. (Running on oeis4.)