login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259792 Number of partitions of n^3 into cubes. 24
1, 1, 2, 5, 17, 62, 258, 1050, 4365, 18012, 73945, 301073, 1214876, 4852899, 19187598, 75070201, 290659230, 1113785613, 4224773811, 15866483556, 59011553910, 217410395916, 793635925091, 2871246090593, 10297627606547, 36620869115355, 129166280330900 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..173 (terms 0..120 from Alois P. Heinz)

H. L. Fisher, Letter to N. J. A. Sloane, Mar 16 1989

G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373.

FORMULA

a(n) = [x^(n^3)] Product_{j>=1} 1/(1-x^(j^3)). - Alois P. Heinz, Jul 10 2015

a(n) = A003108(n^3). - Vaclav Kotesovec, Aug 19 2015

a(n) ~ exp(4 * (Gamma(1/3)*Zeta(4/3))^(3/4) * n^(3/4) / 3^(3/2)) * (Gamma(1/3)*Zeta(4/3))^(3/4) / (24*Pi^2*n^(15/4)) [after Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016

MAPLE

b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,

      b(n, i-1) +`if`(i^3>n, 0, b(n-i^3, i)))

    end:

a:= n-> b(n^3, n):

seq(a(n), n=0..26);  # Alois P. Heinz, Jul 10 2015

MATHEMATICA

$RecursionLimit = 1000; b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[ i^3>n, 0, b[n-i^3, i]]]; a[n_] := b[n^3, n]; Table[a[n], {n, 0, 26}] (* Jean-Fran├žois Alcover, Jul 15 2015, after Alois P. Heinz *)

CROSSREFS

A row of the array in A259799.

Cf. A279329.

Cf. A001156, A003108, A046042.

Cf. A037444, A259793.

Sequence in context: A112832 A148415 A148416 * A003456 A109084 A217596

Adjacent sequences:  A259789 A259790 A259791 * A259793 A259794 A259795

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jul 06 2015

EXTENSIONS

More term from Alois P. Heinz, Jul 10 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 13:57 EDT 2019. Contains 328299 sequences. (Running on oeis4.)