The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259774 Expansion of f(x, x^7) / f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function. 2
 1, 0, 0, -1, 1, -1, 1, -1, 2, -2, 2, -3, 4, -4, 4, -6, 7, -7, 8, -10, 12, -13, 14, -17, 21, -22, 24, -29, 33, -36, 40, -46, 53, -58, 63, -73, 83, -90, 99, -113, 127, -138, 152, -171, 191, -209, 228, -255, 285, -309, 338, -377, 416, -453, 495, -547, 603, -656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). REFERENCES Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 15th equation. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of f(x^4, x^12) / f(x^3, x^5) where f(, ) is Ramanujan's general theta function. Euler transform of period 16 sequence [ 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, ...]. G.f.: (1 + x^4 + x^12 + x^24 + x^40 + ...) / (1 + x^3 + x^5 + x^14 + x^18 + ...). [Ramanujan] G.f.: 1 - x^3 * (1 - x) / (1 - x^2) + x^8 * (1 - x) * (1 - x^3) / ((1 - x^2) * (1 - x^4)) - ... [Ramanujan] a(n) = (-1)^n * A036015(n) = A029838(2*n + 1) = - A082303(2*n + 1). Convolution product of A106507 and A214263. EXAMPLE G.f. = 1 - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^8 - 2*x^9 + 2*x^10 - 3*x^11 + ... G.f. = q^7 - q^55 + q^71 - q^87 + q^103 - q^119 + 2*q^135 - 2*q^151 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ -x^4, x^4] / (QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8]), {x, 0, n}]; a[ n_] := SeriesCoefficient[ 1 / Product[ (1 + x^(8 k + 3)) (1 - x^(8 k + 4)) (1 + x^(8 k + 5)), {k, 0, Ceiling[ n/8]}], {x, 0, n}]; a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ 0, 0, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0}[[Mod[k, 16, 1]]], {k, n}], {x, 0, n}]; PROG (PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0][k%16 + 1]), n))}; CROSSREFS Cf. A029838, A036015, A082303, A106507, A214263. Sequence in context: A084827 A251631 A029076 * A036015 A130521 A090619 Adjacent sequences:  A259771 A259772 A259773 * A259775 A259776 A259777 KEYWORD sign AUTHOR Michael Somos, Nov 08 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 01:48 EST 2020. Contains 331166 sequences. (Running on oeis4.)