login
A259770
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00000001 or 00000101
6
32, 49, 49, 104, 87, 104, 201, 167, 167, 201, 376, 299, 256, 299, 376, 745, 564, 385, 385, 564, 745, 1494, 1086, 612, 451, 612, 1086, 1494, 2897, 2045, 1108, 474, 474, 1108, 2045, 2897, 5610, 3870, 1708, 835, 400, 835, 1708, 3870, 5610, 11065, 7371, 2700, 872
OFFSET
1,1
COMMENTS
Table starts
....32....49..104..201.376..745.1494.2897.5610.11065.21780.42461.82984.162977
....49....87..167..299.564.1086.2045.3870.7371.14001.26647.50766.96574.183815
...104...167..256..385.612.1108.1708.2700.4660..7378.11350.19232.31280..48032
...201...299..385..451.474..835..872..968.1532..1794..2116..2746..4218...4546
...376...564..612..474.400..798..524..450..588...644...540...568..1060....716
...745..1086.1108..835.798.1805..654..436..544...634...528...688..1512....478
..1494..2045.1708..872.524..654..480..392..492...536...424...420...532....402
..2897..3870.2700..968.450..436..392..336..368...428...404...410...430....416
..5610..7371.4660.1532.588..544..492..368..384...362...456...404...404....424
.11065.14001.7378.1794.644..634..536..428..362...368...438...398...404....366
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3) +6*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8) for n>9
k=2: [order 11] for n>12
k=3: [order 14] for n>17
k=4: a(n) = 3*a(n-7) +5*a(n-10) +a(n-13) -a(n-14) -a(n-17) -2*a(n-21) for n>24
k=5: a(n) = 2*a(n-7) -2*a(n-21) +a(n-28) for n>34
k=6: a(n) = a(n-14) for n>21
k=7: a(n) = a(n-1) -a(n-2) +a(n-3) -a(n-4) +a(n-5) -a(n-6) +a(n-7) -a(n-8) +a(n-9) -a(n-10) +a(n-11) -a(n-12) +a(n-13) for n>20
Empirical periodic continuations for column k:
k=6: period of length 14 starting at n=8: 436 544 634 528 688 1512 478 442 570 726 674 764 1724 590
k=7: period of length 14 starting at n=8: 392 492 536 424 420 532 402 344 420 500 416 412 566 448
EXAMPLE
Some solutions for n=4 k=4
..1..0..0..1..0..1....1..0..0..0..0..1....1..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..0..0....0..1..0..0..1..0....0..1..0..0..0..0....0..0..0..0..0..1
..1..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..1..0....0..1..0..0..1..0
..0..1..0..0..1..0....0..0..0..0..0..0....0..0..0..0..0..1....1..0..0..0..0..0
..1..0..0..0..0..1....0..0..1..0..0..1....0..1..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..0..0....0..1..0..0..0..0....1..0..1..0..0..0....0..0..0..1..0..1
CROSSREFS
Sequence in context: A236330 A045023 A222300 * A066472 A140172 A259765
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 04 2015
STATUS
approved