The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259743 Expansion of f(-x)^3 * psi(x^4) in powers of x where psi(), f() are Ramanujan theta functions. 1
 1, -3, 0, 5, 1, -3, -7, 5, 0, 0, 2, 0, 1, -3, 9, -6, 0, 0, -7, -11, 0, 13, 9, 0, 1, 10, 0, -6, -15, 0, -7, 0, -15, 13, 9, 0, 17, 0, 0, -11, 3, -3, 0, 5, 0, -6, -7, 0, 17, -19, 9, 0, -15, 0, 0, 10, 0, -19, 0, 21, 18, 10, 0, 5, 0, 0, -30, 21, -15, -19, -14, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-5/8) * eta(q)^3 * eta(q^8)^2 / eta(q^4) in powers of q. Euler transform of period 8 sequence [ -3, -3, -3, -2, -3, -3, -3, -4, ...]. G.f.: Product_{k>0} (1 - x^k)^3 * (1 + x^(4*k)) * (1 - x^(8*k)). EXAMPLE G.f. = 1 - 3*x + 5*x^3 + x^4 - 3*x^5 - 7*x^6 + 5*x^7 + 2*x^10 + x^12 + ... G.f. = q^5 - 3*q^13 + 5*q^29 + q^37 - 3*q^45 - 7*q^53 + 5*q^61 + 2*q^85 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 EllipticTheta[ 2, 0, x^2] / (2 x^(1/2)) {x, 0, n}]; a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 QPochhammer[ x^8]^2 / QPochhammer[ x^4], {x, 0, n}]; PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^8 + A)^2 / eta(x^4 + A), n))}; CROSSREFS Sequence in context: A229979 A050925 A086696 * A247015 A241972 A226770 Adjacent sequences:  A259740 A259741 A259742 * A259744 A259745 A259746 KEYWORD sign AUTHOR Michael Somos, Jul 05 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 19:45 EST 2020. Contains 331175 sequences. (Running on oeis4.)