%I #15 Jan 01 2021 04:28:50
%S 1,1,1,137,6,29,1,1,97,5,73,1,1,1,1,1,1,17,6,1,53,1,5,41,6,2,1,1,1,
%T 101,257,7,17,1,1,7,2,337,689,7,1,1,761,37,793,1,1,1,181,61,1,21,5,1,
%U 151,1,1,1,7,1,1,1145,2,1,11,7,2,1,593,1,1,1217,1,1,641
%N Let m = A062695(n); a(n) is value of s in decomposition of m defined in Comments.
%C Let m = A062695(n). Write m*y^2 = x^3 - x as m*square = A*B*(A-B)*(A+B) where A and B are the numerator and denominator of x. Then A, B, A-B, A+B have the form s*a^2, t*b^2, u*c^2, v*d^2 for some decomposition of m as s*t*u*v and some natural numbers a,b,c,d. These eight numbers are given in A259680-A259687.
%H G. Kramarz, <a href="http://dx.doi.org/10.1007/BF01451411">All congruent numbers less than 2000</a>, Math. Annalen, 273 (1986), 337-340.
%H G. Kramarz, <a href="/A003273/a003273.pdf">All congruent numbers less than 2000</a>, Math. Annalen, 273 (1986), 337-340. [Annotated, corrected, scanned copy]
%Y Cf. A003273, A006991, A062695, A259680-A259687.
%K nonn
%O 1,4
%A _N. J. A. Sloane_, Jul 04 2015
%E More terms from _Jinyuan Wang_, Jan 01 2021