login
A259642
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00000000 or 00000001
9
18, 29, 29, 69, 64, 69, 133, 171, 171, 133, 236, 365, 581, 365, 236, 472, 813, 1483, 1483, 813, 472, 940, 1964, 3849, 4146, 3849, 1964, 940, 1781, 4499, 11261, 12348, 12348, 11261, 4499, 1781, 3433, 10188, 30957, 42524, 44500, 42524, 30957, 10188, 3433
OFFSET
1,1
COMMENTS
Table starts
...18....29.....69.....133......236.......472........940........1781
...29....64....171.....365......813......1964.......4499.......10188
...69...171....581....1483.....3849.....11261......30957.......82977
..133...365...1483....4146....12348.....42524.....133078......406770
..236...813...3849...12348....44500....182654.....670088.....2436036
..472..1964..11261...42524...182654....899557....3919925....16946757
..940..4499..30957..133078...670088...3919925...19848497...100074919
.1781.10188..82977..406770..2436036..16946757..100074919...593505391
.3433.23712.231015.1313046..9361060..77735408..540718241..3793818370
.6725.54825.639787.4180198.35240824.348525973.2836175763.23386045739
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +3*a(n-3) +a(n-4) for n>5
k=2: a(n) = a(n-1) +a(n-2) +5*a(n-3) +a(n-4) -3*a(n-5) -3*a(n-6) for n>7
k=3: [order 9] for n>10
k=4: [order 12] for n>13
k=5: [order 24] for n>25
k=6: [order 30] for n>32
k=7: [order 42] for n>44
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0..0..0....0..1..0..0..0..1....0..1..0..0..0..1....1..0..0..1..0..0
..0..1..0..0..0..1....0..0..0..0..1..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..1..0..0..0....0..0..0..0..0..0
..0..0..0..0..1..0....1..0..0..0..0..1....0..0..0..0..0..0....0..0..0..1..0..0
..0..0..0..0..0..1....0..0..0..0..0..0....0..0..0..0..0..0....1..0..0..0..0..0
CROSSREFS
Sequence in context: A180117 A339633 A167333 * A045000 A205871 A144833
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 02 2015
STATUS
approved