login
A259616
Decimal expansion of J'_1(1), the first root of the derivative of the Bessel function J_1.
4
1, 8, 4, 1, 1, 8, 3, 7, 8, 1, 3, 4, 0, 6, 5, 9, 3, 0, 2, 6, 4, 3, 6, 2, 9, 5, 1, 3, 6, 4, 4, 4, 4, 3, 3, 2, 2, 4, 3, 6, 1, 2, 7, 0, 3, 9, 0, 9, 6, 8, 1, 9, 2, 6, 4, 3, 5, 0, 4, 6, 7, 7, 4, 2, 9, 2, 4, 2, 2, 9, 2, 0, 9, 8, 5, 9, 0, 6, 5, 3, 8, 6, 1, 8, 9, 3, 3, 5, 4, 1, 7, 2, 0, 0, 9, 3, 7, 8, 4, 8, 4, 1, 1, 1, 4
OFFSET
1,2
COMMENTS
Also root of the equation J_0(x) = J_2(x). - Vaclav Kotesovec, Jul 01 2015
LINKS
EXAMPLE
1.8411837813406593026436295136444433224361270390968192643504677429242292...
MATHEMATICA
FindRoot[D[BesselJ[1, x], x] == 0, {x, 2}, WorkingPrecision -> 105] // Last // Last // RealDigits // First
CROSSREFS
Cf. A115369 J'_0(1), A259617 J'_2(1), A259618 J'_3(1), A259619 J'_4(1), A259620 J'_5(1).
Sequence in context: A028577 A039662 A228496 * A247036 A371861 A202320
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved