This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259601 Triangular array: sums of two distinct upper Wythoff numbers. 5
 7, 9, 12, 12, 15, 17, 15, 18, 20, 23, 17, 20, 22, 25, 28, 20, 23, 25, 28, 31, 33, 22, 25, 27, 30, 33, 35, 38, 25, 28, 30, 33, 36, 38, 41, 43, 28, 31, 33, 36, 39, 41, 44, 46, 49, 30, 33, 35, 38, 41, 43, 46, 48, 51, 54, 33, 36, 38, 41, 44, 46, 49, 51, 54, 57 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Row n shows the numbers v(m) + v(n), where v = A001950 (upper Wythoff sequence), for m=1..n-1, for n >= 2. (The offset is 2, so that the top row is counted as row 2.) LINKS EXAMPLE 17 = 7 + 10 = v(3) + v(4), so that 17 appears as the final term in row 4. (The offset is 2, so that the top row is counted as row 2.) Rows 2 to 9: 7 9    12 12   15   17 15   18   20   23 17   20   22   25   28 20   23   25   28   31   33 22   25   27   30   33   35   38 25   28   30   33   36   38   41   43 MATHEMATICA r = GoldenRatio; z = 13; v[n_] := v[n] = Floor[n*r^2]; s[m_, n_] := v[m] + v[n]; t = Table[s[m, n], {n, 2, z}, {m, 1, n - 1}] TableForm[t] (* A259601 array *) Flatten[t]   (* A259601 sequence *) PROG (PARI) tabl(nn) = {r=(sqrt(5)+1)/2; for (n=2, nn, for (k=1, n-1, print1(floor(n*r^2) + floor(k*r^2), ", "); ); print(); ); } \\ Michel Marcus, Jul 30 2015 CROSSREFS Cf. A000045, A001950, A259556, A259600. Sequence in context: A023180 A029474 A302134 * A075335 A250220 A020720 Adjacent sequences:  A259598 A259599 A259600 * A259602 A259603 A259604 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Jul 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 22:02 EDT 2019. Contains 325210 sequences. (Running on oeis4.)