This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259556 Rectangular array, read by antidiagonals:  T(h,k) = u(h) + v(k), where u = A000201 (lower Wythoff numbers), v =  A001950 (upper Wythoff numbers), and h >= 1, k >= 1. 6

%I

%S 3,6,5,8,8,6,11,10,9,8,14,13,11,11,10,16,16,14,13,13,11,19,18,17,16,

%T 15,14,13,21,21,19,19,18,16,16,14,24,23,22,21,21,19,18,17,16,27,26,24,

%U 24,23,22,21,19,19,18,29,29,27,26,26,24,24,22,21,21,19,32,31,30,29,28,27,26,25,24,23,22,21

%N Rectangular array, read by antidiagonals: T(h,k) = u(h) + v(k), where u = A000201 (lower Wythoff numbers), v = A001950 (upper Wythoff numbers), and h >= 1, k >= 1.

%H Clark Kimberling, <a href="/A259556/b259556.txt">Antidiagonals n=1..60, flattened</a>

%e Northwest corner:

%e 3 6 8 11 14 16 19

%e 5 8 10 13 16 18 21

%e 6 9 11 14 17 19 22

%e 8 11 13 16 19 22 24

%e 10 13 15 18 21 23 26

%e 11 14 16 19 22 24 27

%e T(2,3) = u(2) + v(3) = 3 + 7 = 10.

%t r = GoldenRatio; z = 12;

%t u[n_] := u[n] = Floor[n*r]; v[n_] := v[n] = Floor[n*r^2];

%t s[m_, n_] := s[m, n] = u[m] + v[n]; t = Table[s[m, n], {m, 1, z}, {n, 1, z}]

%t TableForm[t] (* A259556 array *)

%t Table[s[n - k + 1, k], {n, z}, {k, n, 1, -1}] // Flatten (* A259556 sequence *)

%Y Cf. A259598, A259600, A259601.

%K nonn,tabl,easy

%O 1,1

%A _Clark Kimberling_, Jul 22 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 12:41 EDT 2019. Contains 327131 sequences. (Running on oeis4.)