OFFSET
1,1
COMMENTS
REFERENCES
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..2000
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(22) = 60 since 60 and 60*22 = 1320 are terms of A259539. In fact, 60-1 = 59, 60+1 = 61, prime(60)+2 = 283, 1320-1 = 1319, 1320+1 = 1321 and prime(1320)+2 = 10861 are all prime.
MATHEMATICA
PQ[k_]:=PrimeQ[Prime[k]+2]&&PrimeQ[Prime[Prime[k]+1]+2]
QQ[n_]:=PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[Prime[n]+2]
Do[k=0; Label[bb]; k=k+1; If[PQ[k]&&QQ[n*(Prime[k]+1)], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", Prime[k]+1]; Continue, {n, 1, 40}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jun 30 2015
STATUS
approved