login
A259458
From higher-order arithmetic progressions.
1
18, 750, 20250, 463050, 9878400, 205752960, 4286520000, 90561240000, 1956122784000, 43410118752000, 992644715462400, 23427803599200000, 571192163942400000, 14391113340764160000, 374682915193466880000, 10078235746321526784000, 279950992953375744000000
OFFSET
0,1
LINKS
Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
FORMULA
Conjecture: -n*(n+2)*a(n) +(n+4)^3*a(n-1)=0. - R. J. Mathar, Jul 15 2015
Conjecture: g.f.: 18*3F1(5,5,5;3;x). - R. J. Mathar, Aug 09 2015
MAPLE
rX := proc(n, a, d)
n*a+(n-1)*n/2*d;
end proc:
A259458 := proc(n)
mul(rX(i, a, d), i=1..n+3) ;
coeftayl(%, d=0, 3) ;
coeftayl(%, a=0, n) ;
end proc:
seq(A259458(n), n=1..25) ; # R. J. Mathar, Jul 15 2015
MATHEMATICA
rX[n_, a_, d_] := n*a + (n-1)*n/2*d;
A259458[n_] :=
Product[rX[i, a, d], {i, 1, n+4}] //
SeriesCoefficient[#, {d, 0, 3}]& //
SeriesCoefficient[#, {a, 0, n+1}]&;
Table[A259458[n], {n, 0, 16}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)
CROSSREFS
Sequence in context: A346216 A295439 A159873 * A180781 A264468 A303991
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 30 2015
STATUS
approved