login
A259457
From higher-order arithmetic progressions.
1
3, 66, 1050, 15300, 220500, 3245760, 49533120, 789264000, 13172544000, 230519520000, 4229703878400, 81315551116800, 1636227552960000, 34417989365760000, 755835784704000000, 17305616126582784000, 412559358036553728000, 10227311816872550400000
OFFSET
0,1
LINKS
Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
FORMULA
Conjecture: 3*n*a(n) +(-3*n^2-19*n-44)*a(n-1) -2*(n+2)^2*a(n-2)=0. - R. J. Mathar, Jul 15 2015
MAPLE
rX := proc(n, a, d)
n*a+(n-1)*n/2*d;
end proc:
A259457 := proc(n)
mul(rX(i, a, d), i=1..n+2) ;
coeftayl(%, d=0, 2) ;
coeftayl(%, a=0, n) ;
end proc:
seq(A259457(n), n=1..25) ; # R. J. Mathar, Jul 15 2015
MATHEMATICA
rX[n_, a_, d_] := n*a + (n-1)*n/2*d;
A259457[n_] :=
Product[rX[i, a, d], {i, 1, n+3}]//
SeriesCoefficient[#, {d, 0, 2}]&//
SeriesCoefficient[#, {a, 0, n+1}]&;
Table[A259457[n], {n, 0, 17}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)
CROSSREFS
Sequence in context: A292064 A256151 A238471 * A157543 A368596 A157984
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 30 2015
STATUS
approved